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Abstract: This study determined potential microbial and metabolic biomarkers of feed efficiency
in Angus heifers. Seventeen ruminal cannulated Angus heifers underwent a 70-day feed efficiency
trial. Residual feed intake was used to determine high and low feed efficient heifers. On day
70 of the trial, rumen content and blood were collected and used for microbial and metabolomic
analyses, respectively. Bacterial populations were examined by targeting the V4 region of the 16S
rRNA gene and analyzed using QIIME and SAS. Rumen fluid and serum metabolites were analyzed
using MetaboAnalyst. No microbial taxa differed after false discovery rate correction, but seven did
differ (p ≤ 0.05) prior to correction, including Lachnospiraceae (Other), Desulfobulbaceae, Neisseriaceae,
Shuttleworthia, Corynebacterium, p-75-a5, and L7A-E11. No differences were observed in alpha diversity
metrics. Beta diversity utilizing unweighted UniFrac distances analyzed via PERMANOVA was
significant (p = 0.03). Several metabolites in rumen fluid metabolites were correlated with bacteria
that differed by feed efficiency phenotype. The metabolites correlated with bacteria were primarily
involved in nutrient signaling and microbial crude protein availability. These data suggest variation
in the availability of nutrients, primarily amino acids, as well as a relationship among microbiota,
metabolome, and host feed efficiency phenotypes in heifers.

Keywords: microbiome; beef cattle; metabolome; feed efficiency; heifer

1. Introduction

Beef cattle are the primary agricultural commodity in Tennessee and account for a
multi-billion dollar industry worldwide [1]. The greatest input costs for the beef industry
are feed costs, accounting for 40–70% of the total cost of production [2,3]. Given this,
finding methods to reduce input costs through improved feed efficiencies stands to provide
millions of dollars in savings to industry stakeholders. This is particularly important in
heifers and cows, given that they are the members primarily responsible for the propagation
of genotypes and phenotypes. In order to select more efficient animals, methods must
be identified to detect efficient animals. Current methods for evaluating feed efficiency
are often expensive, time-intensive, or require contemporary groups of similar animals.
Biomarkers that can be readily measured in the blood or other easily-accessible body fluid
may provide a more effective method for producers to evaluate feed efficiency phenotypes.
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A biomarker may be defined as “any substance, structure, or process that can be measured in
the body or its products and influence or predict the incidence of outcome or disease” [4]. In
agriculture, biomarkers may be developed for producers to make management decisions [5].
In order to accomplish this, biomarkers must be first identified and then tests developed
that are economically feasible to producers [5]. Several methods may be used in order to
do this, including microbiomics and metabolomics.

One of the primary contributors to variation in feed efficiency is the rumen microbiome.
The rumen microbiota provide the majority of energy precursors required by the host animal
as well as many of the required nutrients, such as all water-soluble vitamins [6,7]. Several
studies have been conducted to examine the relationship between the rumen microbiome
and feed efficiency in beef cattle. Myer and colleagues found several bacterial populations
that were associated with variation in feed efficiency in beef steers, including Prevotella, the
predominant genus within the rumen [8]. Other studies have supported these data in other
beef cattle production classes, including in bulls [9,10] and steers [11], as well as in dairy
cattle and other ruminants [12–15]. However, few, if any, studies have examined the rumen
microbiome and feed efficiency in female beef cattle. Given that these cattle contribute to
the propagation of genetics in the herd, understanding feed efficiency in female beef cattle
is imperative for improving feed efficiency in the herd.

Although the rumen microbiome is strongly associated with feed efficiency in ru-
minants, the rumen microbiome is not readily available to producers and those without
access to research equipment. Therefore, identifying readily accessible and inexpensive
methods for examining the rumen microbiome as well as host physiology that contribute to
variations in feed efficiency phenotypes are necessary. Measuring how serum metabolites
are associated with the ruminal microbiome and metabolites could serve as a method of
identifying more feed-efficient cattle [5]. Further understanding of the relationships among
the rumen microbiome and metabolome, blood metabolome, and cattle feed efficiency is
expected to lead to improved selection criteria and overall herd feed efficiency. To date,
most studies conducted to understand variation in feed efficient phenotypes have thus far
been conducted in beef steers and bulls. Therefore, this study was conducted to establish
the relationship among the rumen fluid and serum metabolomes, rumen microbiome, and
feed efficiency in female cattle. The hypothesis was that there would be differences in the
rumen microbiome and metabolomes of heifers that differed in feed efficiency, leading to
the objective to determine potential biomarkers of feed efficiency in heifers.

2. Materials and Methods
2.1. Experimental Design and Sample Collections

This study was carried out in accordance with the recommendations of the Institutional
Animal Care and Use Committee at the University of Tennessee, Knoxville. The protocol
was approved by the University of Tennessee, Knoxville Institutional Animal Care and Use
Committee protocol number 2639–0818.

In this study, 17 previously cannulated Angus heifers of approximately two years of
age weighing 563 ± 12 kg were chosen for a feed efficiency trial. Animals were cannulated
approximately one year prior to the initiation of this study. The heifers underwent a two-
week adaptation period to the GrowSafe System© prior to the 70-day feed efficiency trial.
The diet was a two-component ration, with one of those components being corn silage and
the other being a custom blend. A total of 50% consisted of corn silage. The second 50%
component consisted of 30% soybean hull pellets, 32.5% cottonseed hulls pellets, 35% dried
corn gluten feed pellets, and 2.5% limestone on an as-fed basis. The ration was developed
based on National Research Council guidelines for growth. Body weight was taken on days
−1, 0, 35, 70, and 71 of the feed efficiency trial, with day 0 denoting the first day of the feed
efficiency trial and used to estimate average daily gain (ADG). Average daily feed intake
(ADFI) based on dry matter intake and ADG were used to determine residual feed intake
(RFI) as a measurement of feed efficiency [16]. On day 70, rumen content, including both
solid and liquor content, was collected via the cannula from the dorsal sac, the ventral sac,
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and the caudoventral sac within the rumen. Rumen content was placed in a 50 mL conical
tube, and pH was measured using a portable pH meter (Denver Instruments, Arvada,
CO, USA). After pH was measured, two mL aliquots of rumen fluid were removed and
processed for metabolomic analysis. Rumen content was immediately frozen and stored
at −80 ◦C. Approximately 9 mL of blood was collected via coccygeal venipuncture into
serum separator tubes (Corvac, Kendall Health Care, St. Louis, MO, USA). Blood samples
were centrifuged at 2000× g and 4 ◦C for 20 min. Serum was transferred to 5 mL plastic
culture tubes, and a 100 uL aliquot was removed for untargeted metabolomic analysis.
Serum samples were then frozen at −80 ◦C. After determining ADFI and ADG, one heifer
had a negative ADG and was thus eliminated from subsequent analyses.

2.2. DNA Extraction, Sequencing, and Analysis

Microbial DNA was extracted from rumen content using methods described by Yu and
Morrison [17]. Briefly, approximately 0.2 g of rumen content was transferred to a lysis tube
and underwent a modified repeated bead beating plus column method with an isopropanol
nucleic acid precipitation. Microbial DNA was purified using the QIAamp Fast DNA Stool
Mini Kit (Qiagen, Hilden, Germany) and quantified using a DeNovix DS-11+ (DeNovix Inc.,
Wilmington, DE, USA). Metagenomic DNA was amplified using a two-step polymerase
chain reaction (PCR). The V4 hypervariable region of the 16 S rRNA gene was targeted
using primers described by Parada [18] and Apprill [19] under the following conditions
for the first step of PCR: initial denaturation step of 95 ◦C for 5 minutes; then 25 cycles of
denaturation for 30 s at 95 ◦C, annealing for 60 s at 55 ◦C, and elongation for 90 s at 72 ◦C;
followed by a final elongation step at 72 ◦C for 10 minutes. Gel electrophoresis was used
to ensure correctly-sized DNA was amplified, then DNA was purified using AMPure XP
beads (Beckman Coulter, Inc., Brea, CA, USA) per manufacturer protocol. Unique indices
(Nextera, Illumina Inc., San Diego, CA, USA) were added to the purified amplified bacterial
and archaeal 16 S DNA via PCR using the following conditions: initial denaturation at
95 ◦C for 5 min followed by eight cycles with a denaturation step of 30 s at 95 ◦C, annealing
at 55 ◦C for 30 s, and an elongation step at 72 ◦C for 30 s, followed by a final elongation step
at 72 ◦C for 10 min. Amplified, barcoded DNA was again purified using AMPure XP beads
per manufacturer protocol. The amplicons were quantified and quality-checked using
spectrophotometry with a DeNovix DS-11+ and a Bioanalyzer (Agilent Technologies, Santa
Clara, CA, USA). Bacterial and archaeal amplicons were then sequenced on the Illumina
MiSeq (Illumina Inc., San Diego, CA, USA) using a v2, 2 × 250 kit per manufacturer
protocol at the University of Tennessee Genomics Core.

2.3. Microbial Sequence Processing

Bacterial and archaeal sequences were processed using the Galaxy server [20] and
Quantitative Insights Into Microbial Ecology v.1.9 [21]. First, Illumina adapters were
trimmed using TrimGalore! [22]. Trimmed sequences were then quality filtered to 90%
sequences at Q ≥ 30. Chimeric sequences were identified and filtered from sequences using
usearch61 [23], and then operational taxonomic units (OTUs) were identified using uclust
using the Silva v138 [23]. Operational taxonomic units identified as Cyanobacteria were
filtered from the OTU table, and then each sample was subsampled to 25,000 sequences
based on the lowest number of sequences in a single sample. To be retained in the dataset,
OTUs had to be observed in at least two samples.

2.4. Metabolomics Processing and Analysis

Metabolites were extracted from serum, and filtered rumen fluid (100 µL) at the
University of Tennessee, Knoxville Biological and Small Molecule Mass Spectrometry Core
using protocols previously described [24,25]. Briefly, metabolites were extracted using
0.1% formic acid in acetonitrile:water:methanol (2:2:1). Metabolites were separated using a
Synergy Hydro-RP column (100 × 2 mm, 2.5 µm particle size) at 25 ◦C and a constant flow
rate of 0.200 mL/min. Mobile phases of A: 97:3 H2O:MeOH with 11 mM tributylamine and
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15 mM acetic acid and B: MeOH with a gradient consisted of the following: 0.0 min, 0%
B; 2.5 min 0% B; 5.0 min, 20% B; 7.5 min, 20% B; 13 min, 55% B; 15.5 min, 95% B; 18.5 min,
95% B; 19 min, 0% B, and 25 min, 0% B. The sample (10 µL) was introduced into the
Dionex UltiMate 3000 UPLC system (Thermo Fisher Scientific, Waltham, MA, USA), and
electrospray ionization was used to introduce the samples into an Exactive Plus Orbitrap
MS (Thermo Fisher Scientific, Waltham, MA) using methods previously described [25,26].

The raw files from Xcalibur (Thermo Fisher Scientific, Waltham, MA, USA) were
converted to the mzML format using ProteoWizard [27] and imported into (Metabolomic
Analysis and Visualization Engine for LC–MS Data (MAVEN) [28]. Peaks were picked
in MAVEN with a preliminary mass error of ±20 ppm and a retention time window of
five minutes. The final metabolite annotations were based on MS1 spectra that have been
previously verified using pure standards. For final metabolite annotation, the eluted peak
of the metabolite would be identified as ±2 min of anticipated retention time as well as
±5 ppm of expected mass. Metabolites were then identified in MAVEN, and the Quan
Browser function of the Xcalibur MS Software (Thermo Electron Corp., Waltham, MA, USA)
was used to integrate peak areas. The identified metabolites were then analyzed using
MetaboAnalyst 4.0 [29]. The peak intensities were median-normalized, log-transformed,
and range-scaled prior to analysis in MetaboAnalyst 4.0.

2.5. Statistical Analyses
2.5.1. Bacteria and Archaea

First, heifers were classified as high- or low-RFI based on ±0.25 standard deviations
about the mean RFI, which resulted in 14 total heifers for analysis (high n = 6; low n = 8).
Alpha diversity metrics, including chao1, Faith’s Phylogenetic Diversity, Good’s coverage,
Shannon’s Diversity Index, and Simpson’s Evenness E, as well as phylum-and genus-level
taxa data, were analyzed for normal distribution using the PROC UNIVARIATE procedure
in SAS 9. Data were considered to follow a normal distribution or approximately normal
based on a visual histogram and a Shapiro–Wilk statistic ≥ 0.90. Those following normal
distribution were analyzed using a one-way ANOVA in SAS 9.4. Those data not following a
normal distribution were first transformed using log, square root, or ranked transformations
in SAS 9.4. The transformation that resulted in the greatest Shapiro–Wilk statistic was
selected for use in subsequent analysis, then analyzed using a one-way ANOVA. p-values
were corrected for multiple testing using the Benjamini–Hochberg false discovery rate
(FDR) correction [30]. Beta-diversity was analyzed using analysis of similarity (ANOSIM)
and permutational multivariate analysis of variance (PERMANOVA) based on unweighted
and weighted UniFrac distances [31]. Linear discriminant analysis effect size (LeFSe) was
used to identify potential microbial biomarkers of RFI in Galaxy using the tools developed
by Segata and others [32]. Significance was determined at p ≤ 0.05.

2.5.2. Metabolomics

Differences in metabolites by high- and low-RFI were analyzed using a t-test for rumen
fluid, and serum metabolomes were analyzed individually in MetaboAnalyst 4.0 using
Benjamini–Hochberg FDR corrected p-values. Principal components analyses (PCA) and
orthogonal partial least squares discriminant analyses (O-PLS-DA) were used to visual-
ize differences in biofluid metabolites by high- and low-RFI based on 2000 permutations.
Supervised random forests were used to generate variable importance in projection (VIP)
plots in MetaboAnalyst 4.0. To determine relationships between rumen metabolites and mi-
crobiota, Spearman correlation analyses were performed using the PROC CORR procedure
in SAS. Significance was determined at p ≤ 0.05. Additionally, the relationship between
the rumen and serum metabolomes was visualized using PCA and O-PLS-DA. Variable
importance in projection plots were utilized to identify metabolites contributing the most
to observed differences by biofluid.
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3. Results
3.1. Microbiome

A total of 917,433 quality-filtered sequences were generated, with 20,919 total OTU
across all samples. All significant bacterial taxa prior to FDR are presented in Table 1. No
significant archaeal taxa were observed and thus not reported. Alpha-diversity metrics did
not differ by RFI (Table 2). The unweighted UniFrac distances analyzed via PERMANOVA
did differ by high-and low-RFI, although no other beta-diversity metrics differed (Table 3).
Principal coordinates analyses were used to visualize beta-diversity by RFI based on
unweighted (Figure 1A) and weighted (Figure 1B) UniFrac distances. Bacteria identified as
significant by LeFSe are presented in Figure 2.

Table 1. Significant bacteria that differed between low- and high-RFI heifers.

Taxa Level Taxon High-RFI 1 Low-RFI 1 p-Value FDR 2

Family Lachnospiraceae
(Other)

2.94 × 10−3

(7.07 × 10−4)
7.82 × 10−3

(1.71 × 10−3)
0.04 0.98

Family Desulfobulbaceae 5 0.00 2.61 × 10−5

(1.11 × 10−5)
0.05 0.98

Family Neisseriaceae 3 3.37 × 10−5

(2.65 × 10−5)
1.09 × 10−4

(3.20 × 10−5)
0.02 0.98

Genus Shuttleworthia 4 1.35 × 10−4

(2.48 × 10−5)
5.89 × 10−4

(1.58 × 10−4)
0.02 0.98

Genus Corynebacterium 3.49 × 10−4

(4.89 × 10−5)
1.53 × 10−4

(5.14 × 10−5)
0.02 0.98

Genus p-75-a5 2.75 × 10−4

(7.19 × 10−5)
1.11 × 10−4

(3.16 × 10−5)
0.04 0.98

Genus L7A-E11 2.15 × 10−4

(8.59 × 10−5)
1.49 × 10−5

(7.28 × 10−6)
<0.001 0.98

1 Mean (SEM) based on raw abundances. 2 Benjamini–Hochberg false discovery rate corrected p-values 3 Based
on log-transformed data 4 Based on square root-transformed data 5 Based on ranked data.

Table 2. Alpha diversity metrics between low- and high-RFI heifers.

Metric High-RFI 1 Low-RFI 1 p-Value

Good’s Coverage 0.95 (0.00) 0.95 (0.00) 0.74
Observed OTU 2366.83 (148.53) 2195.63 (87.38) 0.31

Chao1 4658.78 (315.16) 4536.07 (252.66) 0.76
Faith’s Phylogenetic

Diversity 121.40 (5.39) 113.03 (3.28) 0.19

Shannon’s Diversity Index 8.01 (0.31) 7.80 (0.16) 0.52
Simpson’s Evenness E 0.02 (0.01) 0.02 (0.00) 0.64

1 Mean (SEM).

Table 3. Beta diversity metrics between low- and high-RFI heifers.

Metric 1 Test Statistic p-Value

PERMANOVA 2–weighted 1.30 4 0.22
PERMANOVA 2–unweighted 1.17 4 0.03

ANOSIM 3–weighted 0.08 5 0.22
ANOSIM 3–unweighted 0.16 5 0.09

1 Metrics based on weighted or unweighted UniFrac distances with 9999 permutations. 2 Permutational multivari-
ate analysis of variance. 3 Analysis of similarity. 4 Test statistic is pseudo-F. 5 Test statistic is R.
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3.2. Rumen Metabolome

No metabolites differed by t-test; however, 21 metabolites had a >2-fold difference
between high- and low-RFI heifers (Table 4). Although no differences between low- and
high-RFI metabolomes in the PCA (Figure 3A) were observed, the O-PLS-DA (Figure 3B)
illustrated two distinct metabolomes by RFI. The top 15 metabolites driving those differ-
ences are presented in a VIP score plot (Figure 4A). In the rumen, the only pathway that
was impacted as a result of differences in RFI phenotype was primary bile acid synthesis
(p = 0.02, impact = 0.04).
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Table 4. Rumen fluid metabolites with >2-fold differences between low- and high-RFI heifers.

Metabolite High-RFI 1 Low-RFI 1 Fold Change

UDP-N-
acetylglucosamine 8.44 × 102 (8.44 × 102) 3.23 × 105 (1.83 × 105) 0.0032488

NAD 1.18 × 102 (1.18 × 102) 1.84 × 104 (1.09 × 104) 0.01375
Taurine 2.22 × 103 (1.54 × 103) 1.35 × 105 (1.01 × 105) 0.020692
Cholate 4.83 × 105 (1.36 × 105) 7.08 × 106 (2.82 × 106) 0.075272
Creatine 1.89 × 103 (6.28 × 102) 3.77 × 104 (2.75 × 104) 0.076414

Taurodeoxycholate n.d. 5.48 × 105 (3.36 × 105) 0.081299
Glycodeoxycholate n.d. 4.29 × 105 (3.10 × 105) 0.12439

Cystathionine 1.08 × 104 (5.76 × 103) 2.03 × 103 (8.88 × 102) 8.004
Arginine 9.39 × 103 (3.90 × 103) 1.07 × 105 (6.57 × 104) 0.13458

IMP 6.48 × 103 (2.24 × 103) 4.42 × 104 (3.51 × 104) 0.14821
UMP 4.93 × 104 (1.15 × 104) 2.59 × 105 (1.08 × 105) 0.19245
UDP n.d. 7.78 × 102 (6.71 × 102) 0.195

phosphorylethanolamine 3.88 × 102 (1.76 × 102) 3.68 × 103 (1.96 × 103) 0.20153
cAMP 4.04 × 105 (3.79 × 105) 1.25 × 106 (9.49 × 105) 0.24847

Asparagine 4.18 × 104 (7.51 × 103) 1.53 × 105 (6.18 × 104) 0.32909
Octulose

bisphosphate 5.12 × 105 (1.67 × 105) 1.89 × 105 (7.19 × 104) 2.6493

Creatinine 6.67 × 104 (9.29 × 103) 7.68 × 104 (3.23 × 104) 0.39336
Homocysteine 1.59 × 102 (1.59 × 102) 9.04 × 102 (7.49 × 102) 0.42019

Cysteine 2.22 × 104 (7.15 × 103) 1.01 × 104 (3.22 × 103) 2.1765
FAD 2.81 × 103 (2.81 × 103) 1.04 × 103 (6.76 × 102) 2.1052

3-Phosphoglycerate 9.84 × 105 (1.77 × 105) 2.10 × 106 (3.99 × 105) 0.49568
1 Mean (SEM). n.d. = not detected.
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Figure 3. Principal components analysis (A) and orthogonal partial least squares discriminant
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95% confidence interval, with low-RFI represented by the plus sign and high-RFI heifers represented
by the triangle.
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N-Acetylglucosamine 1/6-
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Figure 4. Variable importance in project plots for the top 15 metabolites contributing to differences in
metabolomes between low- and high-RFI heifers in rumen fluid (A) and serum (B).

3.3. Serum Metabolome

No differences were determined by t-test between low- and high-RFI serum metabo-
lites, but 15 serum metabolites had a >2-fold difference between high- and low-RFI heifers
(Table 5). No separation was observable in PCA (Figure 5A), but the separation was appar-
ent in O-PLS-DA (Figure 5B). The top 15 metabolites that drove differences in metabolomes
by RFI are presented in a VIP score plot in Figure 4B.

Table 5. Serum metabolites with >2-fold difference between high- and low-RFI heifers.

Metabolite High-RFI 1 Low-RFI 1 Fold Change

IMP 2.75 × 103 (1.31 × 103) 6.12 × 105 (4.99 × 105) 0.0050715
UDP-N-

acetylglucosamine 1.52 × 103 (1.03 × 103) 1.09 × 105 (6.45 × 104) 0.013976

NAD 2.24 × 102 (1.64 × 102) 1.19 × 104 (7.07 × 103) 0.023292
UMP 3.69 × 104 (7.16 × 103) 3.87 × 105 (1.67 × 105) 0.094823
GMP 2.17 × 104 (5.49 × 103) 1.38 × 105 (6.40 × 104) 0.1514
dTMP 2.46 × 104 (2.09 × 103) 9.26 × 104 (3.17 × 104) 0.29886

N-Acetylglucosamine
1/6-phosphate 2.06 × 104 (1.93 × 104) 4.35 × 103 (3.02 × 103) 2.8714

IDP 2.41 × 105 (1.26 × 105) 5.65 × 105 (2.83 × 105) 0.35639
Guanosine 4.20 × 104 (3.29 × 103) 1.29 × 105 (4.69 × 104) 0.36182

Fructose
1,6-bisphosphate 1.23 × 105 (4.62 × 104) 3.55 × 105 (1.46 × 105) 0.37308

cAMP 9.52 × 102 (3.60 × 102) 2.66 × 103 (2.35 × 103) 0.38656
Kynurenic acid 6.59 × 104 (1.34 × 104) 1.32 × 105 (1.89 × 104) 0.47088

Glutathione 6.30 × 103 (2.24 × 103) 4.05 × 103 (1.88 × 103) 2.1148
1 Mean (SEM).
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Figure 5. Principal components analysis (A) and orthogonal partial least squares discriminant anal-
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Figure 5. Principal components analysis (A) and orthogonal partial least squares discriminant
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3.4. Rumen Microbiome and Metabolome

Relationships between the rumen microbiome and rumen metabolome were examined
by performing correlation analyses of significant bacteria by RFI phenotype with rumen
metabolites that differed ≥2-fold between low- and high-RFI heifers. Significant metabolites
are presented in Table 6.

Table 6. Correlations of rumen fluid metabolites and bacteria.

Taxon Metabolite p 1 p-Value 2

p-75-a5 2-Oxoisovalerate −0.54 0.04
3-Phosphoglycerate −0.53 0.04

Creatinine −0.73 <0.01
Cytidine −0.61 0.01

Glutamine −074 <0.01
IMP −0.63 0.01

N-acetylornithine −0.64 0.01
Pimelic acid −0.56 0.03

Valine −0.52 0.05
Lachnospiraceae (Other) 2-Oxoisovalerate 0.71 <0.01

3-Phosphoglycerate 0.55 0.03
Arginine 0.55 0.03

Creatinine 0.52 0.05
Cysteine 0.59 0.02
Cytidine 0.56 0.03

Glutamine 0.59 0.02
Phosphorylethanolamine 0.56 0.03

Taurine 0.69 <0.01
UMP 0.52 0.05

Corynebacterium 2-Oxoisovalerate −0.66 <0.01
3-Phosphoglycerate −0.53 0.04

Citrate −0.55 0.03
Phosphorylethanolamine −0.60 0.02

Succinate/Methylmalonate −0.54 0.04
Taurine −0.74 <0.01



Ruminants 2022, 2 291

Table 6. Cont.

Taxon Metabolite p 1 p-Value 2

Neisseriaceae Creatine 0.71 <0.01
Cysteine −0.78 <0.001

Dihydroorotate −0.56 0.03
FMN −0.53 0.04

Glycodeoxycholate 0.53 0.04
Hydroxyproline −0.53 0.04

Nicotinate −0.58 0.02
Phosphorylethanolamine 0.55 0.03

Taurodeoxycholate 0.52 0.05
UMP 0.59 0.02

Xylose −0.56 0.03
Shuttleworthia 2,3-Dihydroxybenzoate −0.57 0.03

2-Oxo-4-methylthiobutanoate 0.53 0.04
2-Oxoisovalerate 0.59 0.02

Asparagine 0.58 0.02
Taurine 0.66 <0.01

UDP 0.59 0.02
Desulfobulbaceae 2-Dehydro-D-gluconate −0.57 0.03

Cysteine −0.55 0.04
Deoxyuridine −0.56 0.03

FMN −0.64 <0.01
Histidine −0.55 0.04

Hydroxyproline −0.60 0.02
Methionine −0.62 0.01

Methionine sulfoxide −0.53 0.04
N-carbamoyl-L-aspartate −0.53 0.04

Nicotinate −0.59 0.02
Tyrosine −0.62 0.01

Uracil −0.53 0.04
Xylose −0.56 0.03

L7A-E11 Succinate/Methylmalonate −0.72 <0.01
Taurine −0.59 0.02

UDP-N-acetylglucosamine −0.76 <0.01
UMP −0.66 <0.01

1 Spearman’s rank correlation test statistic. 2 Significance determined at p < 0.05.

4. Discussion

Globally, beef consumption is rising, as beef provides an excellent source of animal
protein [33]. The United States is one of the largest exporters of beef, exporting more
than one million tons of beef annually [33,34]. In the United States beef industry, feed
costs account for upwards of 70% of the total input costs of production [3,34]. Thus,
identifying methods for improving feed efficiency would decrease production costs as
well as allow for greater amounts of animal protein available for global consumption. The
rumen microbiome contributes to the variation in feed efficiency phenotypes. However,
typically, studies focus on terminal beef cattle instead of reproductive members of the herd.
Therefore, this study examined the variation in feed efficiency of heifers related to serum
and rumen fluid metabolomes as well as rumen bacterial populations.

In this study, several relationships were detected between the bacterial communities
and host metabolic physiology. A relationship observed among feed efficiency, the rumen
microbiome, and rumen metabolome was a positive correlation between asparagine con-
centrations and Shuttleworthia. Furthermore, there were greater relative abundances of
Shuttleworthia as well as asparagine in the rumen of low-RFI heifers. Asparagine, though
not considered an essential amino acid, is required for proper brain development in mam-
mals as well as several other biological functions [35]. It can become essential in specific
situations, such as in periods of gestation, when animals are consuming low-quality for-
ages, or in diseased states [36]. In the rumen, asparagine can be rapidly degraded by the
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rumen microbiota, although it has been demonstrated rates of degradation may differ.
Warner examined the rate of degradation of asparagine, glutamine, nicotinamide, and
formamide in sheep at various time points [37]. Warner observed that asparagine was
primarily degraded by bacterial populations, but rates of degradation were affected by time
or individual animals, possibly suggesting that different bacterial populations may result in
variation in rates of asparagine degradation [37]. The results from Warner, coupled with the
results from the present study, illustrate that there are likely differences in asparagine and
other amino acid degradation in the rumen as a result of divergent microbial populations.
This is of particular interest and importance for ruminant production because microbial
utilization of amino acids results in fewer amino acids available to the host ruminant for
muscle growth, neurotransmission and development, and other biological activities, as
amino acids are catabolized to ammonia which is excreted in the urine as urea [38].

Furthermore, relationships between bile acid products and bacterial taxa that differed
by RFI phenotype were observed. Bacteria that were present in greater relative abundance
in high-RFI heifers, including Corynebacterium and L7A-E11, were both negatively corre-
lated with taurine, a component for the generation of secondary bile acids. The microbiota
found in greater relative abundance in low-RFI heifers, which were positively correlated
with metabolites associated with secondary bile acid formation, included Lachnospiraceae,
Neisseriaceae, and Shuttleworthia. These bacteria were positively correlated with taurine,
glycodeoxycholate, and taurodeoxycholate. The dynamics between bile acids and gut
microbiota are interesting and could account for some of the variation observed in feed effi-
ciency phenotypes in cattle. Bile acids are known regulators of gut microbial populations in
the mammalian gut as well as host metabolism [39]. Interestingly, microbially-conjugated
bile acids (such as glycodeoxycholate and taurodeoxycholate) rapidly activate insulin regu-
lation pathways via G-protein coupled receptors (GPCR) as well as activate gluconeogenic
pathways via FOX01, CEBPα, and HNF4α [40] in vitro and in monogastric species. Al-
though these specific genes do not appear to be up-or-down-regulated in cattle divergent in
feed efficiency, feed efficiency is associated with differential expression in genes related to
energy metabolism [11,41,42]. Lachnospiraceae, in particular, is known to produce microbial-
derived secondary bile acids [43,44]. Lachnospiraceae, as well as the other bacteria found
to be associated with differences in RFI and the secondary bile acids, could be altering
host gene expression related to metabolism. The relationship between Lachnospiraceae
and RFI in the heifers, as well as with the bile acids, may contribute to variation in feed
efficiency phenotypes.

In this study, several microbial taxa of interest were correlated with 2-oxoisovalerate,
including those with negative correlations (p-75-a5 and Corynebacterium) and those with pos-
itive correlations (Lachnospiraceae [Other] and Shuttleworthia). Interestingly, those microbes
that were negatively correlated with 2-oxoisovalerate were present in greater abundances
in high-RFI heifers. Additionally, bacteria positively correlated with 2-oxoisovalerate were
observed in greater abundance in the low-RFI heifers. The metabolite 2-oxoisovalerate
is involved in several vital metabolic reactions, including valine, leucine, and isoleucine
biosynthesis, as well as pantothenate and coenzyme A biosynthesis. Primarily, it is in-
volved in branched-chain amino acid (BCAA) metabolism via the branch chain α-keto
acid dehydrogenase (BCKDH) complex as a product of transamination of valine [45]. The
production of α-keto acids, such as 2-oxoisovalerate, results in allosteric inhibition of the
BCKDH kinase [45]. The inhibition of the BCKDH kinase prevents activation of the BCKDH,
resulting in conserved BCAA [45]. Branched-chain amino acids are important for muscle
growth, particularly in growing cattle. A study conducted by Li and others examined
the effects of BCAA supplementation during nursing on the ADG of growing dairy cattle
from three to twenty-eight days after birth [46]. The authors observed that the steers that
received the treatment during the first four weeks of life had sustained greater ADG than
the control group starting at two months of age through slaughter at eighteen months
of age [46]. The treatment group had, on average, a 14.8% greater final body weight at
slaughter than the control group [46]. The greater availability of BCAA to the growing
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animal may provide greater muscle growth potential [46]. Some bacteria possess the ability
to degrade BCAA into byproducts, including 2-oxoisovalerate, that can subsequently be
absorbed by the ruminant [47]. The greater production and absorption of 2-oxoisovalerate
could potentially result in some decreased transamination of BCAA, allowing for greater
muscle development in low-RFI heifers. This is further supported by other results observed
in this study, including the negative correlation of p-75-a5 with valine and the positive
correlation of Shuttleworthia with 2-oxo-4-methylthiobutanoate, an additional intermediate
of BCKDH.

Another metabolic pathway that is associated with RFI, as well as specific microbiota
in the rumen, is that involved in the amino acid metabolism of serine and the homocysteine
cycle. In the production of serine, 3-phosphoglycerate is converted through a series of
enzymatic processes to serine. Serine can, in turn, be converted into glycine, cysteine,
and homocysteine. Additionally, serine is a precursor for sphingolipids. In the present
study, 3-phosphoglycerate was negatively correlated with p-75-a5 and Corynebacterium,
both of which were present in greater abundances in high-RFI heifers. Lachnospiraceae
(Other), found in greater abundances in low-RFI heifers, was positively correlated with
3-phosphoglycerate, as well as cysteine and phosphorylethanolamine, a sphingolipid
precursor. Rumen bacteria possess the ability to break down cysteine and serine into smaller
components [48], which may make the 3-phosphoglycerate available to the host animal for
use, as cattle possess the ability to produce serine and cysteine from 3-phosphoglycerate [49].
Indeed, Shabat et al. found that amino acid/protein metabolism was upregulated in the
rumen of high-RFI cattle, indicating that less feed efficient cattle possess rumen microbiota
that may decrease the availability of amino acids or amino acid precursors available to the
animal [11].

Relationships were also observed among glutathione, cysteine, and various bacteria
with RFI, in which glutathione and cysteine were positively associated with RFI, as well
as bacteria present in greater abundance in high-RFI heifers. The opposite trend was
also observed with bacteria present in low-RFI heifers. Glutathione and cysteine are vital
antioxidants that reduce the presence of destructive reactive oxygen species (ROS). Low
abundances of glutathione and cysteine have been implicated in increased oxidative stress,
which is interesting given that greater amounts of glutathione and cysteine were observed
in the high-RFI heifers in this study. However, previous studies have demonstrated that
antioxidant species may decrease during the depletion of ROS as well as the release of
glutathione into media during the loss of intracellular glutathione in vitro [50]. Kizil
and others examined the response of plasma markers of oxidative stress in response to
subclinical and clinical mastitis infection [51]. The authors found that plasma glutathione
levels increased with the severity of mastitis infection, indicating increased oxidative stress
during mastitis [51]. The increased levels of glutathione and cysteine in the serum of high-
RFI heifers in this study, as well as the negative correlation of various bacteria with cysteine
in the rumen of low-RFI heifers, suggest a potential increased oxidative stress in high-RFI.
However, the underlying cause of this is yet unknown but warrants further investigation.

Feed efficiency is an incredibly complex phenotypic trait, can be measured using
several different methods, and can change based on time of year, production stage, and
diet, among others. In ruminants, this is further compounded by the fact that the ani-
mal relies substantially on the gut microbiome, primarily the rumen microbiome, as the
primary source of energy precursors, vitamins, and other nutrients [6,7]. Physiologically,
feed efficiency, including RFI, is associated with differences in energy partitioning and
methane production [52]. Researchers have also demonstrated that beef cattle with de-
creased feed efficiency have altered liver function, the primary site of gluconeogenesis.
Alexandre and others examined the liver transcriptome in 16 beef steers differing in feed
efficiency using a residual intake and body weight gain (RIG) method [53]. The authors
observed that in the low feed efficient group, cattle had greater fat deposition and as well
as increased transcripts for inflammatory responses, the result of which was corroborated
using histological methods [53]. Additionally, the low feed efficient steers demonstrated an
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upregulation of genes associated with saturated fatty acid synthesis and processes involv-
ing lipid metabolism [53]. The results have been further supported using other methods
in beef cattle in further studies [54–58]. However, one significant factor that is largely
ignored in most studies is the effect of sex on the relationships between physiological
differences and feed efficiency. Little is currently known about variation in the metabolome
and microbiome in relation to feed efficiency as an effect of sex in cattle. The majority
of beef cattle studies regarding feed efficiency are conducted in steers and occasionally
bulls, but very few, if any, focus solely on female cattle or examine sex as a factor affecting
feed efficiency.

5. Conclusions

To increase global protein supply, tools must be developed to quickly, efficiently, and
cost-effectively assess feed efficiency to inform selection decisions. This study found several
potential biomarkers of feed efficiency in both low and high feed efficient cattle. Addition-
ally, this study found correlations between rumen bacteria and metabolites found in the
rumen fluid. Of note is the identification of the relationship among feed efficiency, rumen
bacteria, and secondary bile acids. The conjugated bile acids are exclusively exogenous
metabolites that can be absorbed by the animal and may impact the genetic expression
involved in nutrient utilization. More work needs to be conducted to validate any potential
biomarkers identified in this study. However, identifying biomarkers that can be readily
measured on-farm or chute-side could be used to improve management and animal selec-
tion decisions. Additionally, this is particularly important as it was conducted in heifers
which demonstrated different biomarkers of feed efficiency than steers.
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