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Abstract

Filth fly pests have a substantial impact on livestock production; annual losses from filth flies were estimated at over 
US$1.5 billion in 1981. Knowing filth fly management and animal production have changed significantly over the past 
40 yr, our objective is to lay the foundation for the development of a transdisciplinary integrated pest management 
(IPM) approach that considers the economics of controlling flies in animal production, with most of the examples 
provided towards beef cattle production systems. By performing an in-depth literature review, it is our goal to 
highlight losses and expenditures associated with the damages caused by these flies, discuss current management 
strategies for the system, and propose industry needs in terms of research gaps and producer education to enhance 
sustainable livestock production. Immediate industry needs include: (1) developing dynamic economic thresholds 
incorporating animal welfare, economics, impacts of chemical use, and climate-related responses; (2) improving 
monitoring methods to improve surveillance efforts for flies as a system and how all types collectively shape the 
system; and (3) updating economic loss assessments to account for losses due to animal defensive behaviors, 
reduced feed efficiency, and unplanned expenditures. While we focus on the beef cattle system in the United States, 
this paper is meant to provide an argument for research in worldwide livestock production (e.g., dairy, poultry, 
swine, and small ruminant).
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Economic entomology is a multi-disciplinary field that assesses 
pest populations and management strategies, while ensuring the 
economic feasibility of crop production. To implement new prac-
tices on their operations, farmers in crop production and producers 
in livestock production must be able to measure the financial and 
non-financial costs and benefits of doing so; thus, entomologists 
should perform economic evaluations in line with producer plans 
and/or objectives (Onstad and Knolhoff 2009). For many, eco-
nomic entomology is the study of crop yields and losses, and this is 
also the case for animal production and costs associated with live-
stock pests. To understand the economic impact of livestock pests 
(specifically filth flies), it is important to define ‘loss’ and ‘expend-
iture,’ which are often incorrectly used interchangeably (McInerney 
et al. 1992). The term ‘loss’ is a loss of production (e.g., reduced 

weight gain, lower milk production, loss of product value from 
consumer reaction to perceived animal welfare or food safety); 
whereas, the term ‘expenditure’ refers to costs associated with pre-
vention and control (e.g., ear tag, insecticide spray) (Morris 1997, 
Rushton 2009). A pest’s total economic impact is the sum of losses 
and expenditures. When studying the economic impacts specifically 
of livestock pests in animal agriculture, attention should be paid 
to (1) reduced animal production; (2) reduced quality of animal 
products; (3) additional costs needed to recover the desired level of 
animal production (e.g., increase in feed, pest management costs, 
treatment, sanitation, etc.); (4) costs of human health related to zoo-
noses and disease control; (5) impact on animal welfare; and (6) re-
strictions on domestic and international trade of animals or animal 
products. Nuisance and other peripheral effects resulting from filth 
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fly activity also have an additional economic impact (Skoda and 
Thomas 1993). Controlling production costs is important for all 
animal commodities such that a perceived minor loss in production 
efficiency can lead to a notable reduction in profit when multiplied 
over all animals within an operation/facility. In addition, fly pests 
and their associated pathogens can create food safety concerns 
(e.g., transmission of Escherichia coli or Salmonella species) for 
the consumer that reduce product demand and value (reviewed in 
Nayduch and Burris 2017, Tomberlin et al. 2017).

Most entomologists are familiar with pest populations reaching 
economic injury levels (EILs) when the pest population occurs at a 
density that will cause measurable economic damage to the crop/
livestock animal of interest (Stern et al. 1959, Headley 1972). These 
values are determined based on the economic value of the crop/live-
stock loss, which equals the cost of controlling the pest to prevent 
those losses (Norris et al. 2003). To help producers decide when to 
implement pest control measures, experts have determined economic 
thresholds (ETs) for common pests of agricultural crops and live-
stock. Economic thresholds are lower values than EILs and are the 
density of pests required before control measures should be initiated 
to prevent pest densities from exceeding the EIL (Stern et al. 1959). 
For some, using a statistical threshold (ST) identifies a pest popu-
lation that is statistically more abundant than should be expected 
(either from a previous time point or an average time point), but is 
often not associated with economic impacts.

Filth fly pests have a substantial impact on livestock production. 
Damage caused by these flies is commonly evaluated in terms of 
direct and indirect damage as well as peripheral effects (Williams 
2009, Machtinger et al. 2021). In animal agriculture, direct damage 
occurs due to contact between the pest and its host, resulting in 
direct injury to the host in the form of skin/tissue damage and/or 
physiological responses such as reduced fertility, growth, and lacta-
tion (Williams 2009, Machtinger et al. 2021). Animal disturbance 
(e.g., alteration of normal behaviors and self-inflicted wounds re-
sulting from pest avoidance and invasion), transmission of patho-
gens, and reduced animal welfare are considered indirect damage, 
which is often difficult to quantify (Williams 2009, Machtinger et al. 
2021). Peripheral effects are also difficult to quantify, as these ef-
fects include filth fly nuisance, off-target impacts of pesticide applica-
tion for fly control, and livestock transport bans and/or regulations 
(Williams 2009, Machtinger et al. 2021). All of these types of dam-
ages have associated losses and expenditures.

Producers who use integrated pest management (IPM) attempt 
to control pests with a combination of tactics producing the best 
outcomes in terms of economic, ecological, and sociological conse-
quences (Rabb 1972). Multidisciplinary approaches are critical in 
IPM and include control methods such as cultural strategies, pest 
resistant or pest tolerant hosts, mechanical and/or physical con-
trols, biological controls, genetic strategies, and chemical tactics 
(Norris et al. 2003). Two crucial components of a successful IPM 
plan include monitoring (ongoing or routine assessment efforts) pest 
populations for surveillance efforts (active and intensive system de-
signed for action) (Christensen 2001). Use of monitoring confirms 
the identification of the pest and/or problem at specific time points 
and locations providing a snapshot of the system; meanwhile, use of 
surveillance facilitates data-driven decisions regarding pest control 
including if there is a need and if the control method is effective 
using real-time data. These components can be a direct assessment 
of the pest or an indirect assessment of the pest’s damage to the 
host. Use of monitoring and surveillance data across a landscape 
can lead to precision agriculture management, using a combination 
of temporal, spatial, and individual data to promote sustainability 

across a landscape, region, and/or community (International Society 
of Precision Agriculture 2021).

There is a long-term and continually growing need to refine IPM 
to increase producers’ profitability by helping producers make data-
driven and sustainable decisions for pest management. This has be-
come critical as pest populations are regulated by the environment 
(e.g., population response to weather shifts for warmer and wetter 
days) and the presence of (abundant) pest populations can also 
change the environment (e.g., use of insecticides vs natural enemies). 
With rapidly increasing emphasis on sustainability in agriculture, it 
is imperative that we adapt pest management practices in livestock 
production to be both environmentally sustainable and economic-
ally beneficial. Sustainable methods could include the development 
of vaccines to target flies and selective breeding of animals (e.g., gen-
etic selection) to reduce losses (Steelman et  al. 1991, 1996, 2003; 
Brown et al. 1992; Pruett et al. 2003; Untalan et al. 2006; Cupp et al. 
2010; Domingues et al. 2021). Innovations like these will be key in 
developing IPM approaches that lower costs and increase effective-
ness (Oyzrzún et al. 2008).

The purpose of this manuscript is to evaluate the economic 
impact and management of three filth fly species that affect live-
stock, specifically beef cattle; thus, we present the foundation for 
developing a transdisciplinary IPM approach that considers the eco-
nomics of controlling flies in animal production. By performing an 
in-depth literature review, it is our goal to highlight losses and ex-
penditures associated with the damages caused by these flies, discuss 
current management strategies for the system, and propose industry 
needs in terms of research and mathematical modeling gaps and pro-
ducer education to enhance sustainable beef production.

Important Fly Pests of Beef Cattle

One of the challenges to establishing sustainable pest manage-
ment models is the compartmentalization of the industries. Using 
the beef industry as an example, each sector presents unique envir-
onmental and ecological stresses that can either promote or limit 
pest populations. Considering the division, it is important to note 
which sectors are pasture based, including cow-calf operators and 
stocker operators, and which sectors are primarily outdoor con-
fined (Gerry 2018). These two systems are completely different eco-
logically, in management strategies employed, and in primary food 
resources for the animals. Knowing the primary attribute of a fly 
population is their ecological niche, the habitat helps to determine 
pest potential. Talley and Machtinger (2020) broadly defined the 
divisions of the beef industry into extensive and intensive systems. 
This classification allows pest managers to relate fly populations to 
both ecologically defined areas of each segment as well as manage-
ment strategies. Extensive systems are broadly defined as cow-calf 
or stocker operations with fewer animals per unit of land (Talley 
and Machtinger 2020) that allow for the proliferation of horn 
flies (Haematobia irritans L., Diptera: Muscidae), face flies (Musca 
autumnalis De Geer, Diptera: Muscidae), and stable flies (Stomoxys 
calcitrans L., Diptera: Muscidae). Intensive systems have a higher 
animal density (Talley and Machtinger 2020) with stable flies and 
house flies (Musca domestica L., Diptera: Muscidae) being consistent 
pests. Many production costs are necessary as producers have an 
average herd size of 43.5 cattle (U.S. Department of Agriculture, 
National Agricultural Statistics Service 2017) and average veterinary 
and medicine costs for cow-calf production of US$26 per animal in 
2020 (U.S. Department of Agriculture, Economic Research Service 
2020). Commodity costs and return data show cow-calf producers’ 
profit margins are small, if positive; thus, minimizing the losses and 
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expenditures associated with pests is important (U.S. Department of 
Agriculture, Economic Research Service 2020).

Currently, economic impacts of biting flies on cattle produc-
tion are associated with losses in production and are evaluated by 
measuring performance and efficiency parameters such as weight 
gain, weaning weights, and feeding efficiency in the form of gain to 
feed ratios (Machtinger et al. 2021). Biting flies also cause behavior-
related economic impacts when cattle exhibit avoidance behaviors 
caused by fly feeding. Determining economic impacts of non-biting 
flies is an additional challenge. These pests cause losses through re-
duced animal production or performance and require expenditures 
for treatment. The complexities of the fly species and their inter- and 
intraspecific interactions further complicate the assessment of eco-
nomic costs. The impact of flies on animal production is influenced 
by the presence of multiple animal host species and breeds and the 
effects of different fly species on hosts, including the effect of animal 
feeding and management regimes on economic impact. Most im-
portantly, ETs are dynamic and change temporally and contextually 
(Axtell 1981); for example, expenditures for fly prevention and con-
trol are not consistent among producers. The use of insecticides is 
region-, producer-, and situation-dependent and may not represent 
the use on an industry-wide level. Management of fly pests includes 
labor, equipment, fuel, and other costs that are highly specific to the 
producer and to the facility. Indirect impacts of abundant resident 
adult fly populations on animal facilities, aesthetic value to poten-
tial customers, or social perceptions of animal welfare are difficult 
to quantify as are other values, such as the storage of manure and 
increased animal comfort.

The three primary filth flies affecting beef production that have 
had EILs and ETs determined include horn flies, face flies, and stable 
flies, which cause a combination of negative effects to animals. Horn 
fly populations cause significant damage because these ectoparasites 
blood feed on their hosts 20-40 times per day, causing a variety of 
damage to beef cattle (Arther 1991, Brewer et al. 2021). Economic 
thresholds for horn flies range from 10 to 230 flies per animal side, 
depending on geographical location, environmental factors, and 
value of the animals (Gordon et al. 1984, Arther 1991, Moon 2019). 
The losses and expenses associated with face fly populations are 
often difficult to quantify, but most producers associate losses from 
infectious bovine keratoconjunctivitis (IBK or pinkeye) with face 
flies (Sinclair et  al. 1986). Because values for measurable damage 
were insufficient, Krafsur and Moon (1997) could only estimate that 
the ET for face flies is well above 15 flies per animal; however, the 
prevalence of pinkeye within a herd often warrants continual face fly 
control. Stables flies are an endemic pest because these flies develop 
in the organic hay material and then blood feed on both pastured 
and confined livestock (Rochon et  al. 2021). Taylor et  al. (2012) 
developed an economic model that estimated the economic losses 
due to stable flies for dairy, cow-calf, stocker, and feeder operations. 
At the time, there were not enough data to quantify reproductive 

losses from stable flies (Taylor et al. 2012), but possible additional 
effects include reduced heifer weight gain, leading to delayed puberty 
and failure to calve as a two-year-old (Engelken 2008, Taylor et al. 
2012). Catangui et al. (1997) determined that the EIL for stable flies 
in feeder heifers is seven stable flies per foreleg per head per minute, 
while the ET is estimated to be 15 flies per animal (Berry et al. 1983, 
Campbell and Berry 1989). A comprehensive review for each fly pest 
was provided in Brewer et al. (2021), Trout Fryxell et al. (2021), and 
Rochon et al. (2021).

Without the ability to identify and assess flies and the wide range 
of ETs, it is difficult for producers to determine when to implement 
control measures. Moreover, producer and farm demographics, pro-
ducer perceptions, management strategies, and horn fly seasonality 
(Smith et al. 2022) influence horn fly management costs. If this oc-
curs for horn flies at cow-calf operations, it is reasonable to assume 
that these decisions also vary for the other filth flies of concern at 
different animal agriculture operations.

Current Economic Loss Assessments
Drummond et  al. (1981) estimated annual losses from horn flies, 
stable flies, and face flies to be US$730.3 million, US$398.9 million, 
and US$53.2 million, respectively. Values adjusted for inflation can 
be viewed in Table 1. Each estimate was based on weight loss and 
reduction in milk flow in addition to specific annual losses. Annual 
losses from horn flies included weight loss per calf, stocker cattle, 
slaughter cattle (%), and percent reduction in milk flow during the 
six-month peak summer horn fly season. Annual losses from stable 
flies included dollars per head weight loss in feedlot cattle and per-
cent reduction in milk flow for the six-month stable fly season. 
Annual losses from face flies included weight losses in calves. For 
example, effective fly control in stocker cattle was estimated to 
have just over an 8% impact on animal performance in the form 
of average daily weight gains (Lawrence and Ibarburu 2007). With 
the changes in cattle production practices and management, plus 
variability in climate, these costs have likely changed over time and 
updates are an important area of future research. Updating these 
estimates is warranted, as changes in the management of cattle pro-
duction, including production practices and consumer perceptions/
choice, and changes in response to variability in climate and envir-
onment have occurred in the 40 yr since the estimates published by 
Drummond et al. (1981).

Scientists have begun to further examine the cause of economic 
losses related to flies associated with animal responses to fly pre-
dation. Animal defensive behaviors reduce grazing time, which de-
creases energy intake while increasing energy output (Todd 1964, 
Dougherty et al. 1993c); however, these studies have not measured 
economic losses associated with those behaviors. Okumura (1977) 
documented a positive correlation between abundance of flies and 
frequency of tail swishing. Schmidtmann and Valla (1982) found 
that Holstein herds exposed to ambient face fly activity had a greater 

Table 1. Annual economic loss estimates (USD) adjusted for inflation using United States Bureau of Labor Statistics (2021)

Fly Species Original Estimate Adjusted Estimate Source 

Horn Fly $730 million $2,196 million Drummond et al. 1981
$876 million $1,702 million Kunz et al. 1991

Face Fly $52 million $157 million Drummond et al. 1981
$50 million $97 million Kunz et al. 1991

Stable Fly $399 million $1,199 million Drummond et al. 1981
$432 million $840 million Kunz et al. 1991
$2,000 million $2,310 million Taylor et al. 2012
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number and duration of bunching episodes and found a positive 
correlation between pest intensity and bunching episodes, although 
no difference in grazing time was observed. Wieman et  al. (1992) 
studied feeder cattle exposed to stable flies and found that bunching 
and heat stress (indirect effects) were responsible for 71.5% of the 
cattle’s reduced weight gain, while the remaining 28.5% was attrib-
uted to fly bites and the energy lost by cattle defensive behaviors 
against the stable flies (direct effects). Dougherty et al. (1993b) ana-
lyzed the effects of face flies on grazing cattle behavior and found 
that cattle fed deeper in the tall pasture grass in an attempt to dis-
lodge flies resulting in larger bites of grass and therefore more grass 
intake. Dougherty et al. (1993a) evaluated the behavior of grazing 
beef cattle when exposed to a release of stable flies every 15 min 
for one hour of grazing meals and results showed that as more flies 
were released, cattle’s movement rates increased for heads, ears, tails, 
front and hind legs, and skin twitches. The flies also decreased the 
time cattle spent at grazing stations; the number of forage bites and 
dry matter intake also decreased. Subsequent studies concluded that 
cattle display accelerated herbage intake (attributed to annoyance) 
and reduced grazing times when stable flies are present (Dougherty 
et al. 1994, 1995). Mullens et al. (2006) monitored dairy cattle re-
sponses to stable flies and suggested that behaviors such as stamping, 
head throwing, skin twitching, and tail flicking were dependent on 
the number of flies present on the animals. Thus, it is essential that 
we improve our understanding of how flies affect individual animals, 
breeds, and herds in different locations.

Considering the importance of insecticides to the beef industry, 
a meta-analysis of over 170 different research trials that evalu-
ated the use of pharmaceutical technologies (e.g., insecticides, 
acaricides, anthelmintics) in beef systems demonstrated that fly 
control helped producers achieve or exceed breakeven points or 
the points at which total cost is equal to total revenue (Lawrence 
and Ibarburu 2007). In the cow-calf sector alone, implementing 
fly control efforts resulted in 2.56% higher weaning weights, 
which represents a 3.05% change in breakeven prices if fly con-
trol pharmaceuticals were eliminated from the market (Lawrence 
and Ibarburu 2007). This change in breakeven price represents a 
US$14.51 cost-per-calf sold if insecticides were eliminated from 
the beef market. Unfortunately, due to many factors including 
limited options, fly control is often stopped due to insecticide 
resistance, regulatory practices, and/or consumer opinions (e.g., 
producer not recognizing value of fly control, devaluing potential 
profits), and when this occurs a producer is less likely to reach 
breakeven points. Additionally, anthelmintics (or dewormers) 
also influence filth fly populations because stocker operators use 
these products as an additional fly control technology (Lysyk and 
Colwell 1996). The combined use of dewormers with insecticides 
for nematode control and fly control in beef production would 
result in a loss of ~US$27 per head if both of these were elimin-
ated or deemed ineffective (Lawrence and Ibarburu 2007). When 
looking at the potential of losing certain pharmaceutical technolo-
gies across all segments of the beef industry, it should be noted 
that dewormers were considered a very important technology 
(Lawrence and Ibarburu 2007). In all beef sectors most fly con-
trol applications are in the form of dewormers that are applied 
as pour-ons. If this method is lost across all segments of the beef 
industry, it would increase the breakeven price by 19%, which 
would represent a cost of $190/ head produced in modern beef 
production (Lawrence and Ibarburu 2007). It is vital to under-
stand how to incorporate current fly control techniques into both 
economic and environmental models for the sustainability of fly 
control measures within the beef industry.

Animal Welfare
Animal welfare is another aspect to consider in terms of filth fly 
damages to cattle and is an area of growing importance to con-
sumers. The World Organization for Animal Health’s (OIE) defin-
ition of animal welfare accounts for the health, comfort, and safety 
of the animals (Alonso et  al. 2020) and has been proposed as an 
indicator for fly control. Disease incidence is the primary indicator 
for fly control because diseases such as pinkeye (conjunctivitis) and 
mastitis affect animal productivity. Keown and Kononoff (2007) 
found that poor udder health and mastitis result in annual losses of 
approximately US$200 per cow in dairy animals. Pinkeye infections 
are estimated to cause annual losses of US$150 million in beef and 
dairy production systems (Hansen 2001), which includes decreased 
growth rates of calves (Thrift and Overfield 1974, Ward and Nielson 
1979). Cheng (1967) evaluated the frequency of pinkeye incidence 
in cattle and its association with face fly populations and found that 
cases of pinkeye consistently increased in herds of cattle where large 
numbers of face flies were recorded. This supports the need for pro-
ducers to track disease incidence over time in their animals and in-
clude both fly populations and disease incidence in their decision 
making; the goal is to prevent disease rather than react to disease 
incidence.

While disease incidence is quantifiable, currently, it is difficult to 
assess animal welfare because there are few tools for assessing and 
measuring an animal’s state of being (Cornish et al. 2016, Alonso et al. 
2020). Fraser (2003) summarizes the methods of classifying animal 
welfare into three groups: objective, subjective, and natural living. 
These three groups focus on the animal’s biological functions (e.g., 
health, well nourished), emotions (e.g., lacking stress and pain), and 
ability to express normal behaviors (e.g., laying, eating); combined 
the animal’s environment should create a natural state for the species 
implying that welfare is ‘an inherent characteristic of the animal and 
not of the environment’ (Alonso et al. 2020). Broom (1986) discusses 
measuring welfare in terms of how the individual animal attempts to 
cope with its environment, while Fraser (2008) suggests that negative 
effects on animal welfare are demonstrated by a decrease in natural 
behaviors. These measurements include mortality rates, fertility, disease 
incidence, offspring number surviving and size, milk production, and 
growth rate. Other welfare indicators include heart rate, measures of 
adrenal outputs in the blood (e.g., cortisol), and abnormal animal be-
haviors such as decreased feeding (Broom 1986).

Cortisol levels are known to increase when an animal experiences 
stress (Whisnant et al. 1985, Boissy and Le Neindre 1997, González 
et al. 2003, Bristow and Holmes 2007, Mench et al. 2011). Stress oc-
curs when environmental effects lead to the over taxation of animal 
control systems, resulting in adverse consequences and poor welfare 
(Broom 1983, 2001, 2007; Broom and Johnson 2000). Lindström 
et al. (2001) found that dairy cows with higher cortisol levels spent 
less time ruminating (Bristow and Holmes 2007). Vitela-Mendoza 
et  al. (2016) examined the relationship between cortisol levels and 
defensive behaviors in dairy cattle exposed to stable flies and reported 
that cortisol levels are linearly related to the number of flies and fre-
quency of defensive behaviors (e.g., more flies resulted in more defen-
sive behaviors and cortisol). Schwinghammer et al. (1986) measured 
physiological and nutritional responses of beef steers exposed to horn 
flies and demonstrated that cortisol levels were significantly increased 
on the first day steers were exposed to 500 horn flies per head.

Current Practices

While a range of fly control options are available for the three major 
fly pests of beef cattle, decision making should also include how the 
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three fly populations interact and also how they affect the different 
livestock operations. This is especially important because fly control 
products and management practices for pasture cattle (cow-calf and 
stocker) are different than for confined animals (feedlot). In practice, 
we notice that cattle operators are not making pest management de-
cisions on individual fly species, but rather flies as a group and some 
of the biggest obstacles are getting past the misconception that all 
flies impact their animals the same. Additionally, little research exists 
regarding how and when (i.e., at what pest population density or 
specific time within the calendar year) these control measures are 
implemented, and each farming operation can differ in producer 
or farm demographics, geographical location, animal selection and 
management, and producer perceptions.

Implementing a dynamic approach to monitor and control each 
fly species requires researchers to evaluate farm activities. Animal 
or crop production on a farm could influence pest fly populations. 
In 2007, about 35% of the 2.2 million farms in the U.S.  report-
edly owned beef cattle (U.S. Department of Agriculture, National 
Agricultural Statistics Service 2007, McBride and Mathews 2011); 
however, only 40% of the average farm produce value came from 
cattle production, and one-third of farm operators worked off-farm 
(McBride and Mathews 2011). A 2008 United States Department 
of Agriculture survey of US beef producers found that 16, 13, 14, 
and 78% of producers are also growing corn, soybeans, small grain 
crops, and hay, respectively (McBride and Mathews 2011). Here we 
speculate that a producer’s management decisions (e.g., pest control 
methods, crop storage, etc.) for crop production and beef produc-
tion, likely influence fly presence, abundance, and species diversity, 
and likely affect costs, expenses, and gains associated with animal 
productivity. For example, a farmer that is harvesting corn for silage 
will leave less than 1 m of stalk in the field, while a farmer that is 
harvesting corn for grain will likely leave the stalks and leaves in 
the field. The increased plant debris that are discarded at the grain 
site, compared to the silage site, could serve as a refuge for stable 
fly development, affecting fly growth, development, and population 
numbers. Moreover, flies developing in manure and animal waste 
can acquire and transfer mastitis-causing pathogens (Anderson et al. 
2012). Producers are engaging in other cropping activities besides 
beef cattle production; however, farm profiles producing multiple 
commodities are underrepresented in the literature. Fly management 
options are limited in these integrated cropping systems, which likely 
have both food safety and biosecurity threats.

As a beef animal progresses through each sector (i.e., cow-calf, 
stocker, feedlot), there are more animals per operation, increasing 
animal density in each sector. In large feedlots (>10,000 animals per 
operations) an integrated approach to fly management is used. Over 
96% of feedlots remove manure as part of their management pro-
gram; this is foundational for fly control, and >30% are using a 
biological agent (parasitic wasps) for fly control (U.S. Department 
of Agriculture National Animal Health Monitoring System 2011, 
Machtinger et al. 2021). Despite these promising trends, over half 
of all feedlots surveyed use insecticide sprays as their primary fly 
management technique (U.S. Department of Agriculture National 
Animal Health Monitoring System 2011, Machtinger et al. 2021).

Producer perceptions influence the need to control filth flies. In a 
survey presented in McKay et al. (2019), Texas and Tennessee cow-
calf producers were asked about the use of different horn fly man-
agement strategies. Producer data from that survey indicated they 
primarily apply insecticides to animals, and many other management 
strategies were never used or discontinued (not published). These pro-
ducers also ranked pests based on perceived cost and damage, with 
filth flies ranked the highest (not published). McKay et al. (2019) also 

noted that willingness to use different management strategies varied 
based on demographics and perceptions. In addition to the response 
behaviors of livestock, disease presence, and fly numbers, producers’ 
perceptions, demographics, and geography could be included in the 
development of a dynamic threshold.

Research Needs

There is a need to develop accurate methods and realistic models for 
assessing fly populations and developing a true surveillance program 
so producers can make informed decisions based on real-time data 
and its resulting predictions; the idea is to use precision agriculture 
technologies to build dynamic models that incorporate cumulative 
losses and expenses from multiple species and appropriate lag times.

Fly management decisions are typically focused on a single fly 
species and its individual effects on cattle; however, producers rarely 
find a single fly species on an animal, and most management options 
control more than one fly species to some extent. Future research 
should investigate each fly species as a part of the production system, 
rather than individually, in terms of sampling strategies and control 
methods. Catangui et al. (1997) noted that few thresholds are avail-
able for livestock pests. Economic thresholds should be developed 
for stable flies and updated for horn flies and face flies using valid-
ated and producer-approved monitoring methods in a dynamic sur-
veillance system that weighs different fly densities by damage effects 
and costs. Updating ETs in a dynamic system would allow producers 
to implement changes that would help them make more informed 
decisions with their resources, time, and money when implementing 
control measures. Focusing on the flies as a dynamic system, rather 
than individually, would help researchers develop a more sustainable 
management program.

Using and Improving SMART (Sensors, Monitoring, 
Analysis, and Reporting Technologies) Surveillance 
to Make Informed Decisions
Current practice calls for producers to evaluate their animals in 
terms of the number of each fly species present, as well as occur-
rences of disease events; however, traditional monitoring methods 
(i.e., counting/visual inspection) are not feasible for many cattle op-
erations. Producers need efficient methods, such as SMART traps 
used for pest and vector surveillance (Potamitis et al. 2017, Staunton 
et al. 2021). These SMART traps will allow producers to implement 
preventative measures, rather than react to emergent problems in 
their herds. For many of these fly species, it could be beneficial to 
monitor the animals’ responses such as their fly-repelling behaviors 
(see Table 2) (Axtell 1981, Mullens et  al. 2006, Machtinger et  al. 
2021). Easier approaches for producers could include the use of 
digital, thermal, or video imagery (Smythe et al. 2020, Psota et al. 
2021). By using cameras, drones, cell phones, and/or game/stationary 
cameras, images could be taken of a percentage of the herd, and 
then uploaded to software (website/app) for analysis. Additionally, 
individual animal responses such as location, feeding, drinking, lying 
down, and tail flick can be monitored with sensors and also incorp-
orated into the model (Barriuso et  al. 2018, Oliveira et  al. 2018, 
Martínez Rau et al. 2020, Herlin et al. 2021). Improvements in tech-
nology and computational analysis will provide automation and less 
labor-intensive fly monitoring and help producers make informed 
treatment decisions. These decisions could be based on calendar, 
animals’ current market value, climate, environment, and/or costs 
of treatment approaches. Recently, beef producers from both exten-
sive (cow-calf) and intensive (feedlots) systems from seven different 
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Table 2. Monitoring and management strategies for horn flies, face flies, and stable flies in the United States

IPM Strategy Horn Fly See (Brewer et al. 2021) Face Fly (Trout Fryxell et al. 2021) Stable Fly (Rochon et al. 2021) 

Monitoring
 Fly  

Popula-
tions

Visual population 
counting

Cutkomp and Harvey 1958, Morgan 
1964, Tugwell et al. 1969, Williams 
and Westby 1980, Skoda et al. 1987, 
Lysyk 2000, Smythe et al. 2020

McGuire and Sailer 1962, Hansens 
and Valiela 1967, Ode and 
Matthysse 1967, Williams and 
Westby 1980, Skoda et al. 1987

Bruce and Decker 1947, 1958; 
Cutkomp and Harvey 1958; 
Cheng and Kesler 1961; 
Campbell and Hermanussen 
1971; Berry et al. 1983; 
Thomas et al. 1989; Guo et 
al. 1998; Mullens et al. 2006; 
Taylor et al. 2020

Digital population 
counting

Smythe et al. 2020   

Trap counting   Hogsette and Butler 1981; 
Berry et al. 1983; Thomas et 
al. 1989; Skoda et al. 1996; 
Guo et al. 1998; Taylor and 
Berkebile 2011; Taylor et al. 
2013, 2020

Immature popula-
tion counting

  Skoda et al. 1991, Berkebile et 
al. 1994, Talley et al. 2009, 
Taylor and Berkebile 2011, 
Wienhold and Taylor 2012, 
Albuquerque and Zurek 2014, 
Friesen et al. 2016

 Animal  
Indicators

Tail flicking Harvey and Launchbaugh 1982 Dougherty et al. 1993b Todd 1964; Okumura 1977; 
Warnes and Finlayson 1987; 
Dougherty et al. 1993a,c, 
1994, 1995; Mullens et al. 
2006

Leg stamping Harvey and Launchbaugh 1982 Dougherty et al. 1993b Todd 1964; Okumura 1977; 
Harris et al. 1987; Warnes and 
Finlayson 1987; Dougherty et 
al. 1993a,c, 1994; Mullens et 
al. 2006

Head throwing Harvey and Launchbaugh 1982 Dougherty et al. 1993b Warnes and Finlayson 1987; 
Dougherty et al. 1993a,c, 
1994, 1995; Mullens et al. 
2006

Skin twitching Harvey and Launchbaugh 1982 Dougherty et al. 1993b Dougherty et al. 1993a,c, 1994, 
1995; Mullens et al. 2006

Ear flicking  Harris et al. 1987, Dougherty et al. 
1993b

Dougherty et al. 1993a,c, 1994, 
1995

Herd bunching  Dougherty et al. 1993b Wieman et al. 1992, Dougherty 
et al. 1993c, Mullens et al. 
2006
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Table 2. Continued

IPM Strategy Horn Fly See (Brewer et al. 2021) Face Fly (Trout Fryxell et al. 2021) Stable Fly (Rochon et al. 2021) 

Management
 Physical Trapping  

*sticky  
*walk-thru  
*vacuum

Bruce 1938, Agee and Patterson 1983, 
Denning et al. 2014, Kienitz et al. 
2018

Thimijan et al. 1973, Pickens et 
al. 1977, Kaya and Moon 1978, 
Peterson and Meyer 1978, Agee 
and Patterson 1983, Johnson and 
Campbell 1987, Denning et al. 
2014, Kienitz et al. 2018

Bishopp 1913; Bailey et al. 
1973; Thimijan et al. 1973; 
Williams 1973; Campbell and 
McNeal 1980; Berry et al. 
1981; Rugg 1982; Agee and 
Patterson 1983; Gersabeck 
and Merritt 1983; Scholl 
1986; Broce 1988; Zacks 
and Loew 1989; Hogsette 
and Ruff 1990; Mihok et al. 
1995, 2006, 2007; Guo et 
al. 1998; Cilek 1999, 2003; 
Mihok 2002; Beresford and 
Sutcliffe 2006, 2008, 2017; 
Taylor and Berkebile 2006; 
Gilles et al. 2007; Taylor et al. 
2007, 2013, 2017; Denning 
et al. 2014; Ose and Hogsette 
2014; Dominghetti et al. 
2015; Machtinger et al. 2016; 
Phasuk et al. 2016; Zhu et 
al. 2016; Hogsette and Kline 
2017; Hogsette and Foil 2018; 
Kienitz et al. 2018

 Cultural Manure manipu-
lation

  Thomas et al. 1996

Pasture design Nichols et al. 2008   
 Biological Predators Thomas and Morgan 1972, Legner 

1978, Krantz 1983, Legner and 
Warkentin 1991, de Azevedo et al. 
2015

Turner et al. 1968, Valiela 1969, 
Kessler and Balsbaugh 1972, Camp-
bell and Hermanussen 1974, Wingo 
et al. 1974, Legner 1978, Thomas et 
al. 1983, Drummond et al. 1988

Legner and Brydon 1966, Legner 
and Olton 1970, Kessler and 
Balsbaugh 1972, Campbell 
and Hermanussen 1974, 
Smith et al. 1985, de Azevedo 
et al. 2018

Competitors Nichols et al. 2008, Fowler and Mullens 
2016

Valiela 1969, Moon 1980, Nichols et 
al. 2008, Fowler and Mullens 2016

 

Parasitoids Marlatt 1910, Hammer 1941, Peck 
1974, Watts and Combs 1977, Figg et 
al. 1983, Cervenka and Moon 1991, 
Mendes and Linhares 1999, Geden et 
al. 2006

Blickle 1961, Benson and Wingo 1963, 
Sanders and Dobson 1966, Thomas 
and Wingo 1968, Turner et al. 1968, 
Wylie 1973, Wingo et al. 1974, Figg 
et al. 1983, Cervenka and Moon 
1991

Greene et al. 1989

Entomopathogenic 
viruses

Ribeiro et al. 2019 Geden et al. 2011  

Entomopathogenic 
bacteria

Lysyk et al. 2010; Madhav et al. 
2020a,b

Hower and Cheng 1968 Lysyk et al. 2002, 2010, 2012; 
Lysyk and Selinger 2012

Entomopathogenic 
fungi

Steenberg et al. 2001; Angel-Sahagún et 
al. 2005; Lohmeyer and Miller 2006; 
Zimmermann 2008; Mochi et al. 2009, 
2010a, b; Bawer et al. 2014; Galindo-
Velasco et al. 2015; Holderman et al. 
2017

Steenberg et al. 2001 Moraes et al. 2008, Cruz-
Vazquez et al. 2015, 
Machtinger et al. 2016, Weeks 
et al. 2017

Entomopathogenic 
nematodes

Trout Fryxell et al. 2021 Stoffolano and Nickle 1966, Stoffolano 
1970, Thomas et al. 1972, Briggs 
and Milligan 1977, Kaya and Moon 
1978, Kaya et al. 1979, Krafsur et al. 
1983, Chirico 1990, Soto et al. 2014

Clark 2001, Mahmoud et al. 
2007, Pierce 2012, Leal et al. 
2017

D
ow

nloaded from
 https://academ

ic.oup.com
/jipm

/article/13/1/14/6578699 by U
niversity of Tennessee Libraries user on 13 M

ay 2022



8 Journal of Integrated Pest Management, 2022, Vol. 13, No. 1

IPM Strategy Horn Fly See (Brewer et al. 2021) Face Fly (Trout Fryxell et al. 2021) Stable Fly (Rochon et al. 2021) 

 Chemical Air projected  
capsules

See Brewer et al. 2021 Casida 1956, Kearns 1956, O’Brien 
1963, 1966, Elliott and Janes 
1978, Campbell 1981, Vijverberg 
et al. 1982, Casida et al. 1983, 
Coats 1990, Bloomquist 1996, 
Martin 1997, Thompson 1999, 
Geary 2005, Lynagh and Lynch 
2012

 

Dust See Brewer et al. 2021 Casida 1956; O’Brien 1963, 1966; 
Elliott and Janes 1978; Vijverberg 
et al. 1982; Casida et al. 1983; 
Coats 1990; Thompson 1999

 

Injection See Brewer et al. 2021 Sommer et al. 1992  
Ear tag See Brewer et al. 2021 Casida 1956; O’Brien 1963, 1966; 

Elliott and Janes 1978; Camp-
bell 1981; Vijverberg et al. 1982; 
Casida et al. 1983; Gaaboub and 
Hayes 1984a, b; Coats 1990; 
Bloomquist 1996; Martin 1997; 
Mulla and Su 1999; Thompson 
1999; Geary 2005; Lynagh and 
Lynch 2012

 

Spray Galindo-Velasco et al. 2015, See Brewer 
et al. 2021

Sun and Johnson 1960, Elliott and 
Janes 1978, Vijverberg et al. 1982, 
Casida et al. 1983, Coats 1990, 
Cox 2002, Isman 2006, Cloyd 
et al. 2009, Arnason et al. 2012, 
Khater 2012

 

Pour-on See Brewer et al. 2021 Elliott and Janes 1978, Vijverberg et 
al. 1982, Casida et al. 1983, Coats 
1990

 

Feed-through Gingrich 1965, Mochi et al. 2009, See 
Brewer et al. 2021

Casida 1956, Kearns 1956, O’Brien 
1963, 1966, Miura et al. 1976, 
Grosscurt 1978, Mayer et al. 1980, 
Thompson 1999, Matsumura 2010

Gingrich 1965

Natural 
Biopesticides

Kraus et al. 1985; Miller and Cham-
berlain 1989; Isman 1999, 2000; 
Mulla and Su 1999; Enan 2001; 
Kostyukovsky et al. 2002; Akhtar and 
Isman 2004; Alexenizer and Dorn 
2007; Mullens et al. 2009, 2017; Juan 
et al. 2011; Khater 2012; Klauck et 
al. 2014, 2015; Lachance and Grange 
2014; Zhu et al. 2015, 2018; Mullens 
et al. 2018a; Mullens et al. 2018b

Gaaboub and Hayes 1984a, b; Mulla 
and Su 1999; Woolley et al. 2018

Miller and Chamberlain 1989; 
Feaster et al. 2009; Mullens 
et al. 2009; Zhu et al. 2009, 
2010, 2011, 2012, 2014, 
2018; Hieu, Kim, Kwon, et al. 
2010; Hieu, Kim, Lee, et al. 
2010; Baldacchino et al. 2013; 
Hieu et al. 2015; Showler 
2017; Roh et al. 2020

Larvicide/Substrate 
Treatment

  Liu et al. 2012, Lohmeyer and 
Pound 2012, Taylor et al. 
2012, Lohmeyer et al. 2014, 
Taylor et al. 2014, Donahue Jr 
et al. 2017

Adulticide   Foil and Younger 2006, 
Hogsette et al. 2008, Nagagi 
et al. 2017

 Genetic 
Modifica-
tion

Flies themselves  Geden and Hogsette 1994  
Host animals Steelman et al. 1991  

Tugwell et al. 1969, Holroyd et al. 1984, 
Stear et al. 1984, Brethour et al. 1987, 
Cocke et al. 1989, Brown et al. 1992, 
Steelman et al. 1996, Pruett et al. 
2003, Untalan et al. 2006, Oliveira et 
al. 2013, Ling et al. 2020

  

Sterilization Eschle et al. 1973, 1977, Kunz et al. 
1974

  

Table 2. Continued
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states identified that precision ranching through sensor-driven tech-
nology would be the most adaptable strategy to increase the sustain-
ability of beef operations (Spiegal et al. 2020). Technology is already 
used to improve efficiencies in intensive animal systems (Neethirajan 
2017) and real-time analysis of animal behavior, animal movement, 
as well as water utilization are currently being assessed in the arid 
southwest of the U.S. by using technology to address sustainability 
issues (Spiegal et  al. 2020). Developing and evaluating new tech-
nologies for measuring and assessing these variables (parameters) 
are needed.

Once parameters can be estimated, management decisions by 
producers would incorporate precision agriculture tools to build a 
dynamic model that incorporates cumulative costs from multiple fly 
species over a given period of time. Equation (1) is an example of this 
dynamic approach for total fly costs in a herd of size n cattle once 
flies pass the EIL:

TFCt =
n∑

i=1

cHF
i,t + cFFi,t + cSFi,t (1)

where TFC represents the total fly costs ($) in time period, t, obtained 
by summing over the animals with index i (i = 1,…,n), where ci,t gives 
the costs imposed by the superscripted respective fly (HF is horn 
fly, FF is face fly, and SF is stable fly). While equation (1) is basic in 
form, it is difficult to estimate the costs from each respective fly spe-
cies. Fly costs include losses from production efficiency, expenditures 
from control measures, and reductions in animal welfare. Examples 
of losses in production efficiency include, but are not limited to, re-
duced average daily gain, disease damages, and treatment costs (e.g., 
pinkeye). Control measure expenditures include items such as the 
cost of labor for treating flies and the cost of insecticides. The op-
timal control measures which would maximize profits for a producer 
are not known ex ante since one does not know the effectiveness of 
the control measures and how many flies will be present in a given 
season on a given animal. Furthermore, this amount would vary sig-
nificantly across many variables such as herd, breed, and location. 
Finally, animal welfare costs could include consumers paying less for 
meat produced from certain production practices (e.g., meat treated 
with antibiotics, grass/pasture fed).

To estimate the costs in equation (1), each producer would need 
to quantify each of these terms for each animal, i, which would be 
extremely difficult. To begin these estimates, a producer could re-
cord their cost of fly control measures at the herd level and convert 
this into a $/head estimate. Similarly, to estimate the cost of an as-
sociated fly-related disease such as pinkeye, the producer could es-
timate the cost of treatment per animal. Using data from biometric 
sensors could help approximate the costs to the producer arising 
from reduced average daily gain costs. For example, first the pro-
ducer would estimate how the average daily gain was reduced by 
the respective fly (species, density, or complex), then they would es-
timate the amount of extra time and feed needed to finish out the 
animal and how much less the animal weighed at the time of its sale; 
conversion ratios could be determined with biometric sensors. Then, 
the producer would include data-associated feed and sale prices to 
determine how much this ‘cost’ is to the producer. While it would be 
difficult for the producer to accurately know which fly species was 
responsible for each aspect of these costs, it is possible for producers 
to record these costs and for technologies to be developed to help 
collect fly data to estimate total fly populations and associated costs. 
The costs should depend on the changing dynamics of the popu-
lations represented through mathematical models; where the most 
significant cost would be preventing death loss and additional losses 
could include those associated with animal efficiency.

Incorporating Animal Welfare Parameters into 
Decision-Based Models
Monitoring animal health and welfare outcomes is an often-
overlooked component for developing and improving ETs for 
pest management unique to livestock pests and would enhance 
the development of pest management programs. Specifically, fly 
populations, disease incidence rates, and assessments for animal 
well-being should be incorporated in threshold development. 
This includes occurrences of diseases, longevity of outbreaks, and 
changes in animal well-being and natural expression. As a health 
example, although fly management is not necessary for a few face 
flies, their populations in the presence of pinkeye would warrant 
management to limit pathogen spread and disease exposure to all 
animal populations. Similarly, an animal that continues in its nat-
ural state – feeding and growing, but covered in horn flies – does 
not need fly management as the animal is tolerating the fly popula-
tion. For emotional state, an animal could be bitten by stable flies 
but not reacting to pain (e.g., not stomping) and maintaining cor-
tisol levels (e.g., not stressed). These examples reinforce the need to 
evaluate fly populations and animal health outcomes as a system 
in different environments and on different animals, rather than in-
dividually. This would account for the systemic impact of flies col-
lectively and would consider impacts on health and welfare as part 
of a holistic animal system. When incorporating welfare into sur-
veillance models, it is also important to understand the heterogen-
eity of the animal population, the environment, and the producer’s 
needs to ensure best animal outcomes and cost efficiency.

Increasing Use and Efficacy of Biorational 
Insecticides Including Botanicals
Biorational insecticides could replace or supplement synthetic in-
secticides which could reduce the safety concerns and sustainability 
challenges through insecticide resistance around food animal prod-
ucts (Khan et al. 2008, Isman 2020). Before the development of syn-
thetic compounds, plant extracts had a long use history and these 
extracts have multiple insecticidal and behavior-modifying proper-
ties, including behavioral effects, repellency, fumigant, and contact 
toxicity (Isman 2006). Multiple botanical extracts, such as pyr-
ethrum, neem, and lemon eucalyptus oil, have been commercialized 
as insecticidal and repellent active ingredients (Isman 2006). Several 
essential oils significantly reduced horn fly and stable fly populations 
on cattle through contact and fumigant toxicities, repellency, and 
effects on fly mating rate and oviposition (Zhu et al. 2011, Mullens 
et al. 2017, Galli et al. 2018). Additionally, essential oils can act as 
synergists with conventional insecticides to reduce the insecticide 
dose and therefore reduce the risk of resistance development (Arena 
et al. 2018, Norris et al. 2018, Suwannayod et al. 2019). Showler 
(2017) summarized the effects of botanical products against both 
horn flies and stable flies. One attractive aspect of using botanicals 
and biorational insecticides, relative to many synthetics, is their 
biodegradability and lower mammalian toxicity, which makes bo-
tanical insecticides an alternative to synthetics where chemicals are 
applied in close proximity to animals (Pavela 2014). These products 
could also be used in a push-pull fly management strategy where 
flies are pushed from animals identified as resistant or treated with 
a repellent to targeted animals that are treated with a biorational 
insecticide. Their use also has the potential to reduce costs in pest 
management as integration of botanical insecticides with synthetic 
or biological insecticides could reduce the cost of chemicals and ap-
plication compared to the use of synthetic insecticides alone (Ouma 
et al. 2014).
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Research needs for using botanical products include 
enhancing their environmental stability, as they typically have 
shorter protective periods in field conditions. Research on 
using nanotechnology to formulate botanical insecticides has 
provided a new route to increase environmental stability (de 
Oliveira et al. 2018). Another barrier is commercialization and 
distribution of new botanical insecticides, which requires con-
tinuous plant availability, standardized products, and regulatory 
approval (Isman 2006). Plant growth highly depends on nat-
ural factors; therefore, extra steps are necessary to ensure con-
sistency of products. An increase in the demand for biorational 
insecticides may improve production economics and stabilize 
consistency and availability of the raw materials needed to make 
these types of products.

Assessing the Role of Climate on Animal Production
In the U.S., greenhouse gas (GHG) emissions associated with agricul-
ture are relatively small (10%) compared to electricity (25%), trans-
portation (29%), industry (23%), and commercial and residential 
properties (13%); specifically cattle are associated with ~5% of U.S. 
GHG emissions (U.S. Environmental Protection Agency 2021). Over 
the last 20 yr, research activity on GHG emissions from livestock, 
with methane as a primary focus, has revolved around topics such 
as diet composition (Harper et al. 1999, McGinn et al. 2004), feed 
intake (Nkrumah et al. 2006, Goopy et al. 2020), feed efficiency, and 
feeding behaviors (Nkrumah et al. 2006). All these parameters form 
a complicated matrix that is often used to create predictive models of 
GHG emissions from beef cattle. Biting flies may contribute to GHG 
emissions through reduced average daily gains (Derouen et al. 1995), 
reduced feed efficiency (Campbell et al. 1987), and other metrics of 
productivity, and are currently left out of these predictive models. 
Animals may have increased GHG production by requiring more 
feed to get to market weight due to stress induced by biting flies. In 
some cases, biting fly control can improve weight gains by signifi-
cant amounts (e.g., 17% increased gains in fly-controlled cattle vs. 
non-fly-controlled cattle in Derouen et  al. (1995), 50% increased 
gains observed in Sanson et al. (2003)). But fly infestations can have 
thresholds where their control does not equate to increased prod-
uctivity (Lysyk and Colwell 1996). It is imperative that sustainable 
pest management systems find a middle ground between product-
ivity and GHG emission mitigation if one exists. Yet, many questions 
remain unanswered, including how flies affect residual feed intake, 
which has shown to be positively correlated with daily methane pro-
duction (Nkrumah et al. 2006). How diet, location, climate, cattle 
breeds, cattle age, and other factors interact with fly burdens and 
how those relationships in turn affect GHG emissions is complex; 
thus it is important that GHG emission effects are included in 
data-driven models.

When considering the recent complete life cycle assessment of the 
entire beef industry, the Integrated Farm System Model (IFSM) can 
be used to determine the economic and environmental outcomes, 
which can include production costs, net returns, GHG emissions, 
energy use, and water consumption (Rotz et al. 2019). We propose 
the use of these parameters with fly management models. Results 
from the IFSM demonstrated that the majority of GHG emissions 
(~70%) came from the cow-calf sector (Rotz et al. 2019); however, 
little to no work in the area of cattle affected by fly pests as it relates 
to GHG emissions has been done. Additionally, the finishing sectors 
of the beef industry (stockers and feedlots) are contributing to just 
under 50% of all reactive nitrogen losses mainly in the form of am-
monia emissions (Rotz et al. 2019). It is evident that more research 
is needed to determine the impact of fly pests on resource use such as 

water consumption and GHG emission rates from fly-infested ani-
mals versus those with few to no flies.

Fly Response to Warming Climate
Knowing flies are ectothermic and that their populations are dependent 
on climate, increased and/or fluctuating temperatures and rainfall will 
alter pest population densities and predator densities (Teskey 1969). 
Recently in Oklahoma, horn fly and face fly populations emerged 
earlier and had a longer season when there was a significant deviation 
of early spring warming compared to the five-year temperature mean 
(Scasta et al. 2017). Additionally, temperature highs reported for the 
day were the most influential variable as the high temperature for the 
day also increased horn fly numbers (Scasta et al. 2017). This was dif-
ferent for face flies as important variables included temperature three 
weeks prior, high temperatures, and days with precipitation predicted 
face fly populations (Scasta et al. 2017). In Florida, stable fly popula-
tions and their parasitoids were monitored weekly at equine facilities 
for three years and populations of both varied with temperature and 
precipitation (Pitzer et al. 2011). Follow up studies on house flies and 
parasitoids under fluctuating temperatures revealed increased abilities 
for flies to adapt to climate and limited abilities for their parasitoids 
to adapt, suggesting that with increased or variable climate, fly popu-
lations could become even more of a concern than current conditions 
(Geden et  al. 2019, Biale et  al. 2020). The role of fly predation on 
animal agriculture may also increase with warming climate.

Data-Driven and Dynamic Pest Modeling
Using data about the effects of pests on specific losses and expenses 
allows data-driven mathematical models to be developed that repre-
sent corresponding biological mechanisms. Including data associated 
with animal welfare, use of synthetic and/or biological insecticides, 
development of SMART sensors, and climatic considerations, can 
also provide suggestions of likely outcomes for different management 
strategies. Interventions (e.g., application to reduce fly numbers) can be 
incorporated as terms in these mathematical models and formulated 
as time-varying controls. Optimization tools, in particular application 
of optimal control techniques to ordinary differential equations, have 
been used successfully to suggest management strategies to achieve 
desired goals (Lenhart and Workman 2007). These techniques are 
formal, mathematical methods which can numerically find a control 
action (represented by functions of time and possibly space) in a given 
mathematical model that achieves a desired goal. Optimal control tech-
niques have been applied successfully to a variety of pest management 
scenarios (Gaff et al. 2007, Whittle et al. 2007, Martinez et al. 2015, 
Guiver et  al. 2016). In practice, the objective of minimizing costs to 
cattle given a fixed budget for control interventions is combined with a 
mathematical model for the population dynamics to formulate an op-
timal control solution. Given an appropriately parameterized model, 
the numerical techniques will compute the optimal control action and 
the corresponding population solution. The optimal control output 
then specifies a time-dependent IPM plan for minimizing both cost and 
loss within budget constraints. The type of mathematical model could 
vary from ordinary differential equations (continuous in time) to differ-
ence equations (discrete in time), and then later be extended to include 
spatial or age structure features as needed.

Ongoing pest population monitoring in a structured surveillance 
program provides a means to dynamically update the mathematical 
models and respond to both predictable and unpredictable events. In 
this context, the optimal control strategy or IPM plan described above 
is formulated based on the most likely sequence of events and the cor-
responding expected response to treatment. Mathematically, this is ac-
complished using a maximum likelihood estimation for the parameters 
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of the model based on data, and it can be continuously updated as new 
data become available with a corresponding update in the IPM plan. 
Another more complex approach involves mathematically modeling 
outcomes as probabilistic events with surveillance data updating the 
probabilities in a Bayesian setting (Ellison 2004). In this case, it may 
be possible to formulate optimal control plans that hedge against less 
likely scenarios with outsized potential for loss.

Conclusions

Filth flies negatively impact beef cattle production. Economic ento-
mology allows researchers to focus on the economic feasibility of 
pest control methods and the use of IPM tactics allows producers to 
consider the long-term sustainability of pest management programs. 
Our literature review revealed that there is a dearth of research re-
garding the sustainability of fly management in animal production. 
Future research to develop dynamic ETs for flies affecting produc-
tion systems, which incorporates animal welfare, economics, im-
pacts of chemical use, and climate-related responses, would provide 
a foundation for the development of sustainable pest management 
programs similar to those being developed and implemented for 
crops. Dynamic and sustainable models will aid both small and large 
farms, as strategies that are effective for large operations typically 
are not feasible for small operations. There is an immediate need for 
improved monitoring methods that look at flies as a system and how 
all types collectively, rather than individually, shape the system for 
surveillance. This includes the addition of assessing and including 
animal defense behaviors, making it easier for producers to collect 
pest data; perhaps through the use of biological sensors. Finally, eco-
nomic losses caused by each fly should be updated to account for 
losses due to animal defensive behaviors and reduced feed efficiency, 
as well as the unplanned expenditures associated with flies. One in-
tention with this review is to argue for the critical need to develop 
smarter, producer-approved, sustainable fly management strategies 
for all animal production, and that without these strategies, animal 
production will remain inefficient and dependent upon chemical 
control. Moreover, we hope that the argument for preventative strat-
egies and increased surveillance will help producers offset losses and 
expenses associated with filth flies and animal production.
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