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A B S T R A C T   

When the number of horn flies that blood feed on cattle exceeds the economic threshold, they can adversely 
affect the health and wellbeing of their hosts. Excessive horn fly burdens also lead to reduced weight gain and, 
consequently, diminished profits for livestock producers. Effective management and treatment require reliable 
surveillance methods for estimating the degree of horn fly burden (i.e., counting the number of flies on cattle). 
Traditionally, these estimates are obtained through human visual estimation, either in-person or by counting 
images on a photo; however, these methods are costly both in terms of time and labor and are prone to 
subjectivity and bias. In contrast, automated methods can expedite the counting process and remove subjectivity 
and bias. To this end, a 2-stage method is presented here that uses computer vision and deep learning to identify 
the location of flies in digital images. The first stage segments the salient cow from all other parts of the image to 
remove flies on neighboring cattle from consideration. The second stage processes full-resolution patches of the 
original image and produces a heat map at the location of flies in the images. The method was trained on a set of 
375 human-annotated images and tested on 120 images, where significant variation was observed amongst the 
human scorers. Counting results are compared to four separate human scorers and demonstrate that the neural 
network produces consistent results and that the method is reliable. Thus, the developed method can be used for 
monitoring changes in horn fly populations over time by anyone and allows for increased rigor and repeatability. 
An examination of individual images where the method was closest to and farthest from the human counts 
provides valuable insights regarding photographic processes that lead to success and failure.   

1. Introduction 

Horn flies (Haematobia irritans L.) are obligate ectoparasites of cattle 
remaining on their hosts for their entire adult life, blood feeding day and 
night, and even mating on the host (Bruce, 1964; Cupp et al., 1998). 
They can occur in large numbers during the summer and fall months, 
often reaching > 1000 flies per animal. Horn flies have negative phys-
iological and economic consequences on cattle. Horn flies blood feed on 
cattle > 30 times a day, which alters the behaviors of animals, decreases 
milk production and weight gain in pastured cattle (Cupp et al., 1998), 
and allows for mechanical transmission of pathogens such as Staphylo-
coccus aureus---causing mastitis and Salmonella (Gillespie et al., 1999; 
Edwards et al., 2000; Oliver et al., 2005; Anderson et al., 2012; Olafson 
et al., 2014), which can lead to zoonotic illness in humans who consume 

beef and dairy products (Omer et al., 2017). Treating heifers with 
insecticidal ear tags for horn fly control resulted in 14% higher weight 
gain than untreated heifers allowing $5.74 to $8.38 return to the pro-
ducer for each $1 spent on horn fly control (DeRouen et al., 2003). The 
economic threshold at which horn flies cause economic damage to cattle 
can be as low as ten flies per animal if pathogens are being transmitted 
(Gordon et al., 1984); however, it is traditionally accepted as 200 flies 
per the side of an animal (Haufe, 1979; Kunz et al., 1991). The most 
recent research examining the cost of horn flies to the cattle industry was 
conducted in 1991 and estimated their impact to be in the range of $700 
million (Arther, 1991) to $876 million annually (Kunz et al., 1991; $1.5 
billion and $1.6 billion in 2018 dollars respectively). While staggering, 
these values may still underestimate the economic impact on producers 
as evidenced by a recent review of economic expenses and losses caused 
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by stable flies (Taylor et al., 2012). 
Current horn fly management strategies are designed to take 

advantage of their obligatory ectoparasitic behavior (Geden and Hog-
sette, 2001). Treatments to control adult flies are often applied directly 
to the host, as horn flies tend to be found on the shoulders, midline, and 
underbelly, or targeted to the immature stage using feed-through insect 
growth regulators. The use of insecticides such as pyrethroids, organo-
phosphates, and cyclodienes is the primary strategy for horn fly pre-
vention and control. Importantly, in order to evaluate different methods 
of horn fly management and health and welfare impacts resulting from 
horn fly feeding, surveillance of these flies needs to be easy, accurate, 
and precise. Surveillance methods for horn flies have slowly developed 
with technology, but adoption by producers is rare and often limited to 
researchers evaluating control products. Current methods for horn fly 
surveillance are limited to (1) training a person to estimate fly pop-
ulations on an animal and (2) taking a digital image of that animal and 
counting flies from the image of that animal (Mochi et al., 2009; Mullens 
et al., 2016; Smythe et al., 2017). Both procedures have advantages and 
disadvantages, but the primary and concerning disadvantages are 
reproducibility, accuracy, and adoption by producers. Since the first step 
of all integrated pest management methods is monitoring and estab-
lishing a surveillance program for pests (Geden and Hogsette, 2001), 
there is a need to develop a quicker, accurate, and user-friendly method 
for assessing horn fly populations (and other pests) on cattle. 

Computer vision and machine learning have been successful with a 
number of pests and pathogens (Ding and Taylor, 2016; Cheng et al., 
2017; Yang et al., 2019), and is already used by beef and dairy producers 
to monitor for health and welfare scores (Spoliansky et al., 2016). 
Because horn fly infestation levels can vary significantly among animals 
within a herd (Pruett et al., 2003), the development of an automated, 
accurate, and precise method would aid producers and other stake-
holders in determining horn fly densities and monitoring for animal 
health and welfare concerns as well as managing insecticide resistance 
and treatment effects. Furthermore, computer vision could facilitate 
selection for increased cattle horn fly resistance through a national sire 
evaluation for horn fly carrying capacity. Digital images captured on 
registered cattle with pedigree and genotypes previously recorded could 

be exploited with computer vision to make a national sire evaluation 
feasible. This development can aid in maintaining sustainable agricul-
ture by improving the natural resistance of cattle, reducing the use of 
pesticides, lowering disease transfer, and improving efficiency. 

Here we developed and validated a convolutional neural network- 
based approach to fly counting by incorporating a diverse set of anno-
tated images (e.g., geography, breed, lighting, fly species, environ-
mental conditions, etc.) with digital count data. We expect that this 
neural network can be used for monitoring horn flies and that it will be 
more efficient than, and equally (if not more) reliable than, traditional 
phenotyping methods at quantifying horn fly infestation levels on cattle. 

2. Materials and methods 

2.1. Image capture 

The goal when assessing horn fly burden is to count the number of 
horn flies on the body surface of a cow. It is impossible to count all the 
flies on all aspects of the entire animal. Here, the two traditional views 
for assessing flies on the animal, side and underbelly, are used in this 
study. It is assumed that the overall fly burden can be approximated 
from the single capture or that multiple images from different angles 
could be combined for a more accurate count. However, even when 
considering just a single image, capturing sufficiently detailed images of 
horn flies is challenging. A massive size mismatch obviously occurs 
between cows and horn flies, where the average head to tail length of a 
cow is 2.5 m and the average length of a horn fly is only 4 mm. The 
implications for image capture are that if, for example, a side view of a 
cow is perfectly captured in a 24-MegaPixel (MP) image (4000 × 6000 
pixels), each horn fly on that cow would be contained within a 10 × 10 
pixel area. A second challenge exists with the body site preference of 
flies which varies between the back, side, and belly areas. Flies on the 
back and belly are particularly difficult to capture in side-view images, 
due to their tendency to overlap and occlude one another. 

Fig. 1 illustrates the visual presentation of horn flies assuming a 
head-to-tail image capture of a cow. It should be noted that these images 
are subsampled from a sharp, high-resolution photo, so they represent 

Fig. 1. An example of the presentation of horn flies in cameras with various resolutions. These results assume a 2 × 3 aspect ratio with the cow’s body captured 
entirely from head to tail. 
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the best-case capture at their respective resolutions. Furthermore, res-
olutions>100MP may introduce considerable challenges due to limita-
tions on lens sharpness (resolving capabilities) and the ability of 
photoreceptors on the image sensor to gather enough light to overcome 
noise. On the other side of the spectrum, this figure illustrates that 8.64- 
megapixel images do not provide enough detail to reliably differentiate 
flies from other artifacts. 

At this time, the vast majority of consumer cameras are available 
within the 54–13.5-megapixel range. In our experiments, we used Nikon 
Coolpix P1000 16.0- Megapixel Digital Camera (Nikon, Tokyo, Japan) to 
capture images in the field. Distances from the cow ranged from 0.3 m to 
0.9 m for underbelly pictures and 3.1 m to 4.6 m for side pictures. 

2.2. Detection and counting method 

The proposed fly detection and counting method requires two par-
allel stages of processing. The stages, illustrated in Fig. 2, are used to (1) 
isolate the salient cow from both the background and other cows in the 
image and (2) identify horn flies. Here, we define the salient cow as the 
subject animal or the cow we are attempting to analyze. 

To detect the salient cow, a semantic segmentation network classifies 
pixels as either salient cow or background. The network used for salient 
cow segmentation is based on the DeepLabV3 + architecture (Chen 
et al., 2018) with a ResNet18 pre-trained front end (He et al., 2016). This 
particular network was chosen due to its exceptional performance in 
terms of segmenting objects in images, particularly when the scale of the 
object varies considerably, as is the case for the problem of salient cow 
segmentation when both close-up and far-away images are used in the 

same dataset. The cow images are down-sampled from their original 
resolution down to one that is 448x448 where, prior to down-sampling, 
the image is made square by padding either the top and bottom or the 
left and right side with white pixels. The network is trained to output 
pixel-wise classification results that label each pixel as either salient cow 
or background. It is assumed that the salient cow occupies the center 
pixel in the image. 

In parallel with salient cow segmentation, the image is broken up 
into a collection of overlapping tiles, as shown below the original image 
in Fig. 2. This is required because the original image is too large to 
process via a single pass on GPU hardware due to limitations on RAM. 
The network instead processes tiles with size 1024 × 1024 in small 
batches and produces tiled fly detection maps. The network used for fly 
detection is also based on the DeepLabV3 + architecture (Chen et al., 
2018) with a ResNet18 pre-trained front end (He et al., 2016). Finally, 
these tiles are recombined (untiled) to reconstruct an image with the 
same dimensions as the original image and the segmentation output is 
used to mask out areas of the image that do not pertain to the salient 
cow. The output image, shown at the bottom of Fig. 2, illustrates the 
effects of masking using black pixels and fly detections are illustrated by 
red dots. 

2.3. Datasets 

To train the segmentation network, a combination of images from 
the COCO dataset (Lin et al., 2014) and our own dataset were used. In 
either case, a single target was chosen from the list of instances in each 
image, the centroid of its mask was identified, and the image was shifted 

Fig. 2. A flowchart illustrating the processing stages involved in the proposed horn fly detection method. The original image is processed by a Salient Cow Seg-
mentation Network in order to isolate the center cow from the background. The original image is also broken up into 1024 × 1024 overlapping tiles and each tile is 
processed by the Fly Detection Network to detect the location of horn flies. The detection tiles are then combined into an image and masked by the salient cow mask 
to eliminate any fly detections outside the area of the salient cow. The image at the bottom illustrates the combination of segmentation (where black pixels are 
masked out) and horn fly detection (where flies are colored red). (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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to place the centroid in the middle of the image. Here, the centroid is 
defined as the center of mass for all pixels belonging to the target of 
interest, i.e., the average row and column position of the target’s spatial 
location in the image. 

From the COCO dataset, images of cows, zebras, sheep, goats, ele-
phants, and giraffes were used. This effectively expands the capabilities 
of the network to handle a wider range of 4-legged animals and en-
courages the network to generalize to unexpected appearances. Fig. 3 
shows 20 samples of the original images and their segmentation targets. 
The overall set of images used for training consists of 4,687 images. 

Pictures (n = 375), taken of both the back and ventral midline area of 
Holstein and Jersey dairy cattle and beef cattle with color patterns 
representative of common industry breeds were used to train the fly 
detection network. Samples of images from the dataset are shown in 
Fig. 4, illustrating the body presentation of cattle in the images. In some 
views, the salient cow is fully captured within the bounds of the image 
space whereas, in others, only a small section of the cow’s body is 
provided. 

Images were annotated by personnel using Microsoft Paint (Micro-
soft, Redmond, WA) to train the neural network. Pure red (255 Red, 
0 Green, and 0 Blue) was used to mark the flies seen on the center cow in 
each image, and images were saved using the lossless compression 
Portable Network Graphics (png) format. Pure colors are almost never 
seen in natural images and lossless compression ensures that each pure 
red annotated pixel can be reliably extracted prior to creating target 
images for neural network training. 

Human annotation styles vary from user to user and the precision of 
the annotation locations is not exact. Therefore, in this work each of the 

annotations was converted to a standardized form, as shown in Fig. 5. In 
each image triplet, the original image is on the left, the human anno-
tation is in the middle, and the standardized form is shown on the right. 
Notice that humans used either circles, lines, or full-coverage blobs to 
annotate each fly. Regardless of the human style, the standardized form 
is created by extracting the centroid of each connected component (red 
mark) and replacing the human annotation with a circular marker at 
that position. The circles’ diameters were manually adjusted to a single 
value for each image in order to closely match half of the head-to-tail 
length of flies in the images. 

To account for the imprecision of the human annotator, a buffer 
region (shown in gray in Fig. 5) was placed around each standardized 
annotation. Within this region, the network is allowed to label the pixels 
as either “fly” or “no fly” without penalty. The rationale behind this 
methodology is to make sure the network is not training itself to mimic 
the human annotation errors by outputting a circle with the exact same 
diameter and centroid location that the human chose, knowing that the 
results of human annotators are variable. 

2.4. Human-based predictions and sensitivity analysis 

Pictures (n = 120) were annotated and counted by four individuals, 
along with the neural network, in order to determine interrater and 
intrarater reliability. Both the individuals and the neural network 
repeated the process three times with the same set of pictures. The total 
number of flies counted by an individual rater and the neural network 
for one picture were averaged amongst the repetitions. The coefficient 
variation (CV) was then calculated by dividing the standard deviation by 

Fig. 3. A set of 20 samples from the training set used to train the salient cow segmentation network. The entire training set consists of 4,687 images.  
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the mean for every rater’s picture. The CV was calculated to determine a 
rater’s dispersion around the mean for each picture counted. A lower CV 
means the rater had a more precise estimate every repetition. Mixed 
model analysis of variance in SAS 9.4 (PROC GLIMMIX; Cary, NC) was 
used to assess interrater reliability, with the random effect of image and 
rater*image, while blocking on the image. To assess intrarater reli-
ability, a no variable model in SAS 9.4, (Cary, NC) was used with 
random effect of intercept. An interclass correlation (ICC) was then 
calculated for each rater by dividing the estimate by the residual. ICC 
was used to determine the correlation within a rater. An ICC > 0.75 is 
considered excellent, while an ICC < 0.40 is considered to be poor 
(Portney and Watkins, 2009). 

3. Results 

3.1. Description of network training and post-processing 

The cow segmentation network was implemented and trained in 
MATLAB using the Deep Learning Toolbox (Mathworks, 2020). Seg-
mentation results are produced via a 2-channel output with softmax 
classification and cross-entropy loss at each pixel location. Training was 
performed using Stochastic Gradient Decent with Momentum (SGDM) 

with minibatches of eight images and an initial learning rate of 10-3. 
Augmentations included random rotations (±25◦), random horizontal 
reflections, random horizontal and vertical scales (0.5–1.5), random 
shearing (±0.15), and random horizontal and vertical translation (±10 
pixels). These augmentations are meant to maintain the upright pre-
sentation of animals in the center of the image while spatially varying 
their presentation as much as possible within reason. The trained 
network used in this work was obtained after processing 100 epochs of 
the dataset. 

MATLAB was also used to train and evaluate the horn fly detection 
network. Both network inputs and outputs are trained with 1024 × 1024 
overlapping tiles extracted from the full-resolution original image. 
Overlaps are chosen so that only the middle 512 × 512 section of each 
output is used to reconstruct the full-resolution output. Thus, the 256- 
pixel wide border region is used only to give the center portion of the 
tiles more spatial context to detect flies. So, for example, a 2048 × 3072 
input image would be constructed using 24 non-overlapping 512 × 512 
tiles, and each of these is extracted from the center of 24 overlapping 
1024 × 1024 tiles. Fig. 2 demonstrates the image tiling process on a 
sample image. 

For horn fly detection, augmentations of tiles included random ro-
tations (±45◦), random horizontal reflections, random horizontal and 

Fig. 4. A set of 16 samples from the training set used to train the horn fly detection network. The entire training set consists of 375 images.  
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vertical scales (0.5–1.5), random shearing (±0.2), and random hori-
zontal and vertical translation (±100 pixels). The reason rotations were 
limited to ± 45◦ was to preserve the orientation of horn flies, which 
typically orient downward towards the ground when feeding on the 
sides of cattle (Geden and Hogsette, 2001). 

To convert a pixel-wise segmentation of horn flies into fly counts, 
regional maximums are extracted in post processing. This assumes that 
the confidence of the output classification is strongest near the center of 
each fly and that confidence decreases for pixels that are farther from the 
center until it eventually crosses 0.5 and classifies pixels far from the 
center as background. In this case, the pixel that is equal to the 
maximum value within its own region is likely to correspond to the 
center point of the fly. To detect these region maximum locations, 
during forward inference a 9 × 9 max-pooling layer is added to the end 
of the network and its output is concatenated with the original output. 
By comparing these two outputs pixel-by-pixel, regional maximums can 
be detected by only considering pixel locations where the two outputs 
are equal. Because the radius of the max-pooling region is equal to four 
pixels, the method cannot detect flies that are less than five pixels apart 
from one another. In practice, this is acceptable since flies that are<5 
pixels wide would be nearly impossible to differentiate from artifacts. 

3.2. Performance evaluation 

Salient cow detection was trained on 4,270 images that were 
extracted from the COCO dataset and 417 images that were labelled 
from our fly detection dataset. Fig. 6 illustrates the results of the trained 
network on 14 randomly chosen samples from the dataset. The 

segmentation results successfully identify and mask the salient animal in 
each of the examples, even in the presence of nearby animals and partial 
obstruction. 

The results in Fig. 7 demonstrate the network’s performance on 10 
images from the 103-image test set. The performance on the test set 
allows us to evaluate the level of overfitting that might occur during 
training. While there are some unwanted artifacts and errors in the re-
sults, the level of success on the test set indicates that the network was 
able to generalize its understanding of the salient animal in images. 

Numerically, the salient cow segmentation method produces the 
precision and recall presented in Fig. 8 over a wide range of thresholds 
from 0.01 to 0.99. Fig. 8 also presents the Intersection over Union (IoU) 
of the salient object segmentation, which is perhaps a better metric for 
evaluating segmentation performance when the sizes of targets varies. 
These results, obtained on the test set, indicate that a peak IoU of 0.83 
can be obtained when using a 0.5 threshold to differentiate between 
salient cow and background. Using this same threshold, the precision is 
approximately 0.9 and the recall is 0.92. 

3.3. Human-based predictions and sensitivity analysis 

When ICC was calculated for each individual rater, all raters had an 
excellent ICC (Table 1); meaning, for every picture, a rater counted a 
similar number of horn flies every repetition. Combined, all raters 
counted a similar number of horn flies for each picture, with a combined 
ICC of 0.95. When the CV was compared amongst the raters, raters were 
not different from one another and counted pictures very similarly (P =
0.9; Table 1). The neural network always had a CV of 0, regardless of the 

Fig. 5. A set of 18 sample crops from the training set used to train the horn fly detection network. The left sides illustrate the original image crops and the middle 
contains user annotations. Because the annotation marks vary greatly between annotators, they were converted to a standard form shown in the right sides. The white 
regions are marked as flies, the black regions are marked as background, and the gray regions illustrate regions of ambiguity. During training, the gray regions do not 
affect the cost and the network is free to assign this as fly or background without penalty. 
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Fig. 6. The results for 30 samples from the salient cow segmentation training set. Original images, ground truth segmentations, and network outputs are illustrated in 
each sample from left to right. The network outputs are practically indistinguishable from the ground truth in most cases. 

E.T. Psota et al.                                                                                                                                                                                                                                 



Computers and Electronics in Agriculture 180 (2021) 105927

8

Fig. 7. The results for 10 samples from the salient cow segmentation validation set. Original images, ground truth segmentations, and network outputs are illustrated 
in each sample from left to right. While most of the network outputs resemble the ground truth, there are some errors in situations where nearby cows overlap with 
the salient cow (4th row, 1st column and 5th row, 2nd column). Overall, results illustrate strong generalizability from training to validation sets. 
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picture, meaning it counted the exact same number of horn flies for each 
repetition, which is expected from a deterministic algorithm. When 
assessing interrater reliability, raters and the neural network were 
significantly different to one another (P < 0.0001). Rater 2 counted 
similar to the neural network and with rater 1. Rater 4 routinely counted 
higher than the other raters, while rater 3 routinely counted lower 
(Table 1). The neural network has a strong reliability with consistent 
counts for each repetition, while human raters are more variable in their 
counts. 

Examples of network failures and success shed light on how the 
performance is affected by the cow, the environment, and the image 
capture conditions. The nine images where the network was closest to 
the human annotation average are shown in Fig. 9. In all of these images, 
the cow is mostly white or light brown. This is unsurprising, because the 
dark flies stand out mostly on light fur. Seven of the nine images are of 
the belly region of the cow and the other two depict the cow in its en-
tirety from a side view. When only the belly region is photographed, the 
flies appear larger in the image, thus they are easier for both the rater 
and the network to identify. In terms of image capture properties, each 
photo is exposed well (no blown-out highlights or noisy shadows) and 
focused properly on the subject. Again, this detail makes it relatively 
easy for both the rater and the network to identify individual flies and 
differentiate them from other artifacts. 

The nine images where the network produced the worst results 
(relative to the average human annotator) are given in Fig. 10. The cows 
in the failure set are mostly darker than the cows in the success set. The 

two exceptions are lighter cows that have dark patterns with small spots. 
Six of the nine failure images depict the side-view and the images are 
generally captured from farther away than successful images. This 
causes the flies to appear as little more than black dots on white fur or 
slightly lighter dots on black fur; however, it appears that the main 
contributor to network error is small patterns in the fur and dirt/debris. 

A closer inspection of the successes and failures is provided in 
Figs. 11–13, which contains samples of true positives, false positives, 
and false negatives. The true positive examples in Fig. 11 include flies of 
various sizes and presentations. Some are large, crisp images of flies that 
are easily discernible, while others are merely dark blobs on a lighter 
background or vice versa. 

The false positive set in Fig. 12 sheds some light on the most common 
type of error that the network tends to make. There are clearly some flies 
that the human annotators missed and the network detected, which is an 
encouraging sign. It also appears that the majority of the false positives 
that are clearly not flies come from small artifacts that stand out from the 
background. In some cases, the natural texture of the fur is mistaken for 
a fly. In other cases, it appears to be a speck of dirt. 

Finally, the false negatives in Fig. 13 illustrate situations where the 
network fails to identify the fly. In nearly half of these samples, it is 
difficult to validate if the human annotation is correct. It may be easier 
to discern from the larger context of the image, but many of these small 
crops are blurry and/or depict very small flies. It is worth noting that, in 
a couple of samples, the distance between flies may be making it difficult 
for the regional maximum to separate flies from one another. 

4. Discussion 

To the best of our knowledge, this is the first attempt to use a deep 
neural network to count flies on livestock. The results demonstrate the 
potential of the method and an inspection of successes and failures point 
towards some generalizable lessons for further development. Under 
ideal conditions with large flies in sharply focused and properly exposed 
images, the proposed method performs as well as human annotators. 
Future improvements in digital imaging technology, such as higher 
resolution sensors, better noise handling, and improved autofocus will 
directly result in improved performance even if the processing frame-
work is unchanged. 

Fig. 8. Precision vs. recall averaged over the 103-image test set (left). Threshold values 0.1, 0.2, …, 0.9 are labeled on the curve. Intersection over Union (IoU) is also 
plotted (right) as a function of threshold for values ranging from 0.01, 0.02, …, 0.99. 

Table 1 
Comparison of human raters and the neural network mean fly count outputs for 
assessing flies on cattle. Raters were consistent among themselves (high ICC 
scores), but differed between one another and the neural network (P < 0.0001).  

Rater Mean Standard Error Letter Group ICC 

Rater 1 53.0 6.8 C 0.99 
Rater 2 55.4 6.8 BC 0.99 
Rater 3 46.8 6.8 D 0.99 
Rater 4 69.5 6.8 A 0.99 
Neural Network 50.0 6.8 B 0.99 

*Raters that share similar letter groups do not differ at alpha = 0.05. 
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An inspection of the results shows that they are likely to improve 
with a more tightly constrained image capture process. For example, 
images of the side-view should be taken at an angle perpendicular to the 
cow. If the cow’s shoulders are closer to the camera than the tail, it is 
likely that depth of field will become an issue and some region of the 
cow’s body will be out of focus. Images captured in low light (indoor) 
conditions make it difficult to achieve sharp, low noise results. This is 
because the camera’s only two mechanisms for handling low light are to 
open up the aperture or increase the gain, resulting in a narrow depth-of- 
field or high-amplitude additive noise, respectively. 

Current technologies exist that might improve the results, if inte-
grated into both the image capture routine and processing framework. 
For example, multi-image super-resolution has shown promising per-
formance on satellite images (Deudon et al., 2020) and similar tech-
niques could likely be developed to merge multiple images of slow- 
moving targets like cattle into a 100MP or greater resolution image. 
Another technique that might improve performance is to encode the cow 
body location into each high-resolution tile. In this work, each tile was 
processed independent of every other tile and the detection method had 
no information regarding where that tile was located on the original 
cow. By encoding this location into the tile for processing, the detection 
method may have an improved level of expectation in terms of how flies 
should present themselves in the tiled image because horn flies are not 
uniformly distributed over the surface of the cow’s body. Horn flies 
typically occur in higher densities on the animal’s back and belly; this 
information could potentially improve the accuracy of the neural 
network in the face of ambiguous horn fly images. 

Our computer vision system could be employed to screen large 
numbers of cattle to identify animals with extreme horn fly carrying 
capacity (both high and low) from multiple breeds and family lineages. 
Extreme horn fly carrying capacity animals subsequently could be tested 
for volatile semiochemicals to identify a diverse repertoire of attractants 
and repellants which could be synthesized and employed as part of a 
push–pull horn fly control program (Oyarzún et al, 2008). Alternatively, 
small groups of naturally attractant cattle could be employed to attract 
flies away from the main herd or conversely repellant cattle to dissuade 
flies. Horn flies use complex volatile chemicals to choose their targets. 
Exploiting this horn fly sensing and signaling mechanism may lead to 
cost effective horn fly control measures that are sustainable with little 
harmful impacts to the environment or beneficial insects. 

5. Conclusion 

Here we present a neural network for counting horn flies on dairy 
and beef cattle, which is an efficient and equally (if not more) reliable 
method as traditional quantifying methods. We were surprised to see 
that the annotation of digital images was relatively uniform by each 
rater, but intrarater reliability was low. Importantly, the neural network 
was significantly more repeatable and reliable compared to human an-
notators. Logical next steps are to validate the network with additional 
host species (e.g., beef cattle), and develop the network to identify and 
differentiate additional pest species (e.g., stable fly) and horn fly damage 
(e.g., mastitis). Using the network, we envision the creation of a rela-
tional and accumulating database which incorporates phenological data 

Fig. 9. The nine images from the testing set with the smallest relative error between the average human annotator and the network-based approach.  
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Fig. 10. The nine images from the testing set with the largest relative error between the average human annotator and the network-based approach.  

Fig. 11. Random samples of true positives from the testing set.  
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of horn flies from different farms using different management tech-
niques. This resulting database will be essential in the future monitoring 
and modeling of horn flies and insecticide resistance and planning sus-
tainable management options. 
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