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Abstract

The global population is rapidly increasing and will surpass 10 billion people within the next 20 years.
As diminishing resources continue to impact agriculture, and with the necessity to feed the world by
2050, the agricultural sector must be able to sustainably and efficiently produce high-quality sources
of food that are both attainable to the global population and contribute to healthy, balanced nutrition.
Ruminants are a unique contributor towards a sustainable and food secure world, as they are
available and utilized across all economic and social demographics, and can produce high-quality
protein from otherwise inedible plants from land that is typically unsuitable for crop production or
cultivation. Thus, developing tools, methodologies, and systems for optimizing the production of
protein from ruminants stands to make great impacts on food security. Breeding and genetics have
played a role in this development, but cannot be a singular solution. Microbes are present at
abundances that equal or exceed host cell counts, are ubiquitous throughout all mammalian systems
and are required for regular host-physiological functions. Optimizing these host-microbe-symbioses
in ruminants permits the opportunity to augment the utility and efficiency of microbiomes and their
functions to produce production-specific phenotypes and outputs. This review, therefore, examines
the role of microbiomes in ruminants to efficiently and sustainably produce high-quality protein for
human consumption to aid in efforts to achieve global food security.
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Review Methodology: We searched the following databases: CAB Direct, Agricola, Google Scholar, and Scopus. Keyword search terms
used: food security, agriculture, sustainable protein, cattle microbiome, microbiomics, metagenomics, metabolomics, feed efficiency,
bovine reproductive efficiency, methane production, beef cattle, agricultural sustainability, host-microbe symbioses, ruminant microbiology.
In addition, we used the references from the articles obtained by this method to check for additional relevant material.

Introduction

The global population is expected to exceed 10 billion
people by 2050 [1] and obtaining and maintaining the
resources required to achieve a sustainable global food
system will become more challenging as the global
population rises. Attempting to undertake this global
concern can be daunting, as there are many food systems
to examine, variable issues to consider and defining the
problem has been difficult. Over the past 50 years,
government and global agencies have aimed to determine
an adequate definition of sustainability, as past sustainability
definitions tended to be either too vague or too complex to
adequately address what the definition specifically sought to

achieve [2]. The UN has developed a comprehensive
sustainable development plan [3], and its extensive goals
and campaigns make clear the complexity of the issue.
When specifically examining global food sustainability, there
are numerous attributes of food systems that should be
considered. The Global Roundtable for Sustainable Beef
provides a satisfactory definition which takes into account
many facets of the sustainability development plan, includ-
ing a global food system that is socially responsible,
environmentally sound and economically viable, and pro-
duction that prioritizes the planet, people, animals and
progress [4]. Regardless of the many interpretations that
have encompassed food systems sustainability [5–8], they all
must include, to some degree, improving nutrition and food
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security. Food security has been defined as a country’s
access to sufficiently meet dietary requirements, both from
household food acquisition and allocation behaviour, as
well as access to clean water and sanitation [9]. Thus,
sustainably improving the nutrition available to individuals
stands to make the greatest impact globally.
The agricultural sector’s input in global food system

sustainability and food security is critical, as a sustainable
food system must efficiently network producers, land,
environment, natural resources and finances. Importantly,
these enterprises are responsible for efficiently supplying
important nutrients to the population, specifically protein.
However, over one billion people globally have insufficient
protein intake, resulting in health and growth concerns
[10, 11]. As a result of inadequate dietary protein, the
growth of over 178 million children in developing countries
under the age of 5 are predicted to be stunted [12],
and globally, 90% of stunted children originate from only
36 countries [10, 12]. As populations increase, this greater
demand for protein can be relieved by establishing
sustainable and efficient systems to produce foods that
help to meet dietary protein and amino acid requirements
for healthy children and adults. Considering these issues,
ruminants are well-positioned to meet this demand for
increased protein. Ruminants constitute major protein
sources globally, throughout all socioeconomic strata
[13]. Within the USA, there are over 800 million acres of
range and pasture, which amounts to roughly 35% of the
country [14]. The majority of these areas are unsuitable for
crop production or cultivation, are highly erodible if
ploughed, provide habitats and critical food sources to
wildlife and wild ungulates, and cultivation would increase
the risk of erosion and runoff while also decreasing soil
carbon sequestration [15–17]. The best land-use scenario,
therefore, is to convert the energy from grass and forages
produced on this otherwise non-arable land into edible
food and protein for human use with ruminants (e.g. cattle,
sheep and goats). Specifically, in a grain-fed production
system, cattle generate 19% additional human-edible
protein than they consume [18], upcycling these
human-inedible plants into high-quality protein for human
consumption. Alternatively, research has demonstrated
that plant-based replacements can produce nutritionally
similar food per unit cropland [19]. Although there are
debates as to the considerations of livestock production
and animal protein consumption [8, 20–23], with research
supporting numerous stances, ultimately the nutritional
requirements of the omnivorous human species cannot be
met with solely plant-based food systems [21]. A sustain-
able food system for the human population requires, in
part, animal-sourced nutrients in order to ensure adequate,
balanced, dietary nutrition [20, 21, 24]. Consequently,
optimizing ruminant production stands to make a pro-
nounced impact on securing sustainable sources of food
and protein for the human population.
Gains in ruminant production have historically been

made through selection-based programs focused on host

production optimization. Yet, microorganisms are equally
as critical for the normal function of numerous body
systems [25–28]. Studies have continued to demonstrate
the mutual, commensal and parasitic potential micro-
organisms impart on these ruminant systems [29–31],
and until the turn of the century, little knowledge had been
gained regarding the microbial impact on ruminant pro-
duction. Through the advent of modern nucleotide
sequencing technologies, novel microbial methods and
tools have emerged that have enabled researchers and
producers to investigate biological systems with further
resolution, specifically with regard to the components
contributing to the variation guiding such production
efficiencies. Characterizing these microbiomes (the com-
bined genetic material of all microorganisms in a specific
environment) sets the groundwork for further research to
determine the importance, function and complex networks
of specific microbiota, core microbiomes, keystone species
and/or microbial profiles within specific niches. As micro-
biomes in ruminant systems have the potential to greatly
impact ruminant production, this review focuses on the
examination and use of microbiomes in ruminants as a
means to responsibly and sustainably improve ruminant
production to ultimately secure high-quality sources of
food and protein for human consumption.

Ruminant Microbiomes and Feed Efficiency

Microbiome research in ruminant production character-
istically concentrates on nutrition. To improve food
security through the availability of animal-based protein,
nutritional efficiencies are commonly targeted by
researchers to optimize the nutrient, dietary and metabolic
needs of the ruminant host. Given the importance of the
rumen and lower gastrointestinal tract microbiomes to host
nutrient utilization, the implications of these microbiomes
on ruminant production have been explored. Bacteria make
up the largest portion of the rumen microbiome, in terms
of abundance [32]. Because of these large populations and
their connection to the overall metabolic potential of the
rumen [32], variation in the populations of bacteria,
including variation in abundance, diversity and individual
taxa, can provide insight into the contributions of those
bacteria to differences observed in cattle feed efficiency
(FE). Early studies analysed the dissimilarities in bacterial
community profiles in divergent FE steers on a finishing diet
based on polymerase chain reaction – denaturing gradient
gel electrophoresis (PCR-DGGE) banding patterns [33].
The rumen bacterial signatures clustered by low- and
high-FE, and rumen bacterial communities in steers with
greater FE were more closely related to each other (91%)
compared with steers with low-FE (73%). A later study
conducted by Hernandez-Sanabria et al. found similar
results using analogous methods of bacterial community
analysis in animals differing in FE [34]. This study found too,
that steers fed a finishing diet had rumen bacterial
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communities that phylogenetically clustered by FE pheno-
type [35]. Similar differences have been observed in
bacterial taxa and communities in recent studies using
next-generation DNA sequencing techniques for microbial
interrogation of extremes in FE phenotypes [36]. However,
in contrast to these previous studies, the authors did not
identify any phylogenetic clustering of bacterial commu-
nities as a function of FE phenotype, rather smaller
taxonomic shifts in species and genera. Specifically,
numerous bacterial genera were identified, such as
Succiniclasticum, Lactobacillus, Ruminococcus and Prevotella
[36]. These microbes are key contributors to ruminal
function. For example, Ruminococci are cellulolytic, and are
known to produce acetate, formate and hydrogen; all
important metabolites of ruminal metabolism [37].
Rather than large changes in bacterial populations, these
finer shifts in organisms have also been identified in other
research [38, 39]. Organisms, including Succinivibrio spp.,
Eubacterium spp., and Robinsoniella spp. [34] as well as
Methanobrevibacter sp. strain AbM4 and Methanosphaera
stadtmanae [35], have been associated with differences in
FE, to name a few. The putative functions of these
organisms, such as succinate production in Succinivibrio
spp., again indicate their metabolic contribution to the
rumen [40]. The microbial taxa that vary as a result
of FE likely also exhibit different metabolisms, in turn
altering host FE phenotypes, which has been observed in
sheep [40, 41] and cattle [42]. This suggests that the
metabolism of the microbiota may also be important
for dictating host phenotype, rather than the differences
in relative abundance alone. Global changes to the micro-
bial population are not often identified or implicated
in FE divergences. Collectively, the aforementioned
studies suggest that functionally significant microbes in
the rumen, such as Prevotella or Ruminococcus, may
greatly enhance the functional capability of the rumen
to utilize nutrients, impacting fiber digestibility and/or
host FE.
Recent research has supported the supposition that

dramatic shifts in the abundance of bacterial populations
among animals differing in FE may not be the underlying
cause of variation in FE, but rather the result of lower
abundant, keystone species that are functionally superior or
fill a specific niche. A study conducted by Shabat et al. found
that greater-FE cows contained greater abundances of
Megasphaera elsdenii in the rumen [43]. M. elsdenii are
lactate-consuming bacterial species that are often found in
association with high-grain diets due to the production of
lactate by other bacteria, such as Streptococcus bovis [44].
The major byproducts of M. elsdenii include butyrate and
propionate, of which greater concentrations or abundances
have been associated with increased FE in ruminants
[33, 34]. In the same study by Shabat et al., it was observed
that less-FE animals did not have any taxa that dominated in
phylogenetic annotations of genes, suggesting that greater
diversity or lack of dominant functionality results in
decreased FE [43]. Microbial phylogenetic diversity

variations have often been implicated in deleterious
phenotypes, such as health outcomes [45–48]. As the
power of FE microbiome studies in ruminants beings to
increase with the reduction in sequencing costs and
availability of larger study populations, microbial phylo-
genetic diversity may further prove to be an important
indicator in FE and animal health.
Another genus of interest in relation to FE in cattle is

Prevotella. Prevotella is one of the most diverse genera in the
rumen and is often the most abundant genus in the rumen
[36, 49–51]. Species within Prevotella perform a diverse
range of functions, including fibrolytic, amylolytic and
proteolytic functions, and exhibit great variation at the
genetic level [52–54]. Greater Prevotella abundances in
the rumen have been associated with lower FE in cattle
[36, 55]. The dominance of relative abundances compared
with other genera and the great functional diversity of
Prevotella may lead to decreased FE in cattle. It has been
demonstrated that the increased diversity within
species can lead to deleterious health outcomes [45–48].
However, little is still known about the contributions of
Prevotella or its intra-species diversity towards divergences
in FE in cattle, and the studies presented provide
only correlation, not causation, of taxa-level associations
with FE.
At the phylum level, Bacteroidetes and Firmicutes

are the predominant bacteria identified in the rumen,
often accounting for greater than 70% of the total relative
bacterial abundance in the rumen [36, 51]. Members
of Bacteroidetes tend to dominate the bacterial
community composition when the host ruminant is fed a
diet consisting of greater concentrate proportions [36],
whereas Firmicutes are often more abundant when the
ruminant diet consists primarily of forages [51]. The
differences in abundance under these two conditions
provide insight as to the functional relationship between
these two phyla. The relationship between Bacteroidetes
and Firmicutes is often quantified as a ratio between the
two phyla. The Firmicutes:Bacteroidetes ratio has been
used to identify differences in energy utilization in humans
[56], mice [57] and ruminants [50], and are commonly
examined and implicated in obesity and diabetes in animals
and humans [58, 59]. As these phyla constitute large,
functionally significant members of the rumen microbiome,
and impact the capacity to ferment polysaccharides, the
quantity of Bacteroidetes and Firmicutes are of great
interest in energy utilization and FE in ruminants.
Individual animal variation also appears to contribute to

variation in FE and the rumen microbiome. Henderson
et al. analysed rumen microbiomes and other species with
rumen-like gastrointestinal systems [60]. Henderson et al.
found that, besides diet, individual animal variation con-
tributed the greatest variation in the rumen or gut
microbiomes of these animals, although, there was a
‘core’ microbiome across most of the samples [60].
These data confirmed previous studies that observed,
when accounting for diet, individual animal variation still
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contributed to variation in the bacterial community
compositions, which may be partly responsible for differ-
ences in FE [33, 61, 62]. Although a core rumen
microbiome appears to exist [60, 62, 63], the variation in
microbiota that represent a low relative abundance may be
responsible for the greater divergence in host FE pheno-
types. Researchers in other microbiome fields have
suggested that rather than global shifts or variation in
microbial community composition being responsible for
differences in observed phenotypes, keystone species that
are present at low relative abundances may be responsible
for great variations in phenotypes [64]. If keystone species
are driving variation in host FE phenotypes, this could
potentially account for some of the individual variations
in FE and the rumen microbiome, though more analyses
are needed to confirm. Ultimately, when examining the
recent advancements in elucidating the variation in FE, and
determining the rumen microbiome impact on FE, current
meta-analyses have been key in determining the status of
the field. A meta-analysis conducted by Gleason and White
in 2018 examined the relationship between various
measures of FE and the rumen microbiome [65]. In beef
cattle, the diet and microbiome appeared to have the
greatest influence on FE and dry matter intake [65].
However, the authors reported that, due to lack of
sufficient available datasets, further examination of the
relationship between FE and the rumen microbiome was
not possible [65].

Ruminant Microbiomes and Methane Production

Beyond individual species or genera of microbes, domains
and kingdoms of microbes can impact FE and nutrient
utilization in ruminants. Ruminal archaea are the primary
producers of methane. Methanogenesis in ruminants is a
highly debated topic, predominantly due to the negative
impact of methane as a greenhouse gas on the environment
and the deliberation of its impact on FE. Methanogenesis
from livestock contributes an estimated 28% to anthro-
pomorphic greenhouse gas emissions [66]. In addition, it is
estimated that methanogenesis in cattle results in a 2–12%
reduction in FE [67]. Due to the contribution of methane
to reductions in FE in ruminants, methane mitigation
strategies have been assessed with regard to populations
of methanogenic archaea (commonly referred to as
methanogens), including how they relate to the rumen
microbiome. Several studies have identified relationships
between methane production, the rumen microbiome and
FE. A study conducted by Zhou et al. examined the effect of
low- or high-energy diets on methanogen abundance in
steers [35]. This study found that total methanogen
populations did not differ between diets, nor between
low- and high-FE steers, although differences were
observed at the genus level between both diet and FE
ranking [68]. A study later conducted by Wallace et al.
measured methane production and methanogen

populations in steers fed two different diets, one pre-
dominantly concentrate-based and the other forage-based,
and likewise found similar results with regard to limited
differences observed in methanogen populations as a
function of diet [69]. In contrast to results from Zhou
et al., Wallace et al. did note that archaeal abundances were
greater in steers with greater methane emissions [35, 69].
Cattle with the same level of dry matter intake, but differing
extremes in residual body weight gain exhibited no
differences in enteric methane production, in vitro
methane production and methanogen abundances in the
rumen and cecum [70]. These findings were in contrast to
the idea that variation in residual weight gain on high-grain
diets was a function of reduced methane production. The
authors concluded that the differences in residual weight
gain under similar dry matter intakes may be more related
to metabolic differences than that of digestion-related FE
variance.
Host-microbial symbioses have also been implicated

in rumen microbial methane production. Using rumen
metagenomic profiling, researchers identified links between
microbial genes and methane emissions [71]. Interestingly,
when comparing breed differences with methane emissions
and archaeal abundances, the rankings were consistent
within the diet, suggesting that archaea abundances and
subsequently methane emissions, may be under host
genetic control. Indeed, of the 3970 microbial genes
identified from metagenomic analyses, 20 genes were
associated with methane emissions and explained 81% of
the variation. These genes primarily identified as methane
metabolism genes. For example, the methyl-coenzyme M
reductase alpha subunit gene (mcrA) was included in a
cluster of genes to be associated with methane emissions.
Methyl-coenzyme M reductase catalyses the final
methanogenesis reaction [72]. The transcript association
of this gene with methane production within other
ruminants such as dairy cattle and sheep has also been
identified [73, 74]. In cattle, researchers have also identified
that methane emissions were heritable, and have sub-
sequently derived genomic expected breeding values
for methane traits based on 747 head of Angus cattle
phenotyped for methane traits and genotyped for
630 000 single nucleotide polymorphisms [75]. Overall,
data support genetic cross-talk with the ruminal
microbiome and the potential to genetically select for
microbial profiles resulting in environmentally-significant
production phenotypes.
Although many strategies have been utilized for the

reduction of methane emissions in cattle, their efficacy is
typically circumstantial, as many dietary and management
factors influence their use and effectiveness. The addition of
ionophores, such as monensin, to diets has been common
practice in the beef industry, as supplementation has been
shown to increase average daily weight gain and FE [76].
The method of action has been theorized to be primarily
due to the perceived selective lethal targeting of monensin
on Gram-positive bacteria, which produce important
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volatile fatty acids for growth and maintenance, such as
propionate [77]. The reduction in methane production has
also typically been attributed to monensin use, as the
reduced ruminal viability of Gram-positive bacteria impacts
the Gram-positive production of substrates available for
methanogen growth [77]. However, as technologies have
permitted deeper investigation into microbial species,
studies have demonstrated that monensin supplementation
may not follow the Gram-positive theory, and that rather
than suppressing classical Gram-positive bacterial popu-
lations, monensin influenced finer shifts in key microbial
species important to rumen function [78, 79]. In the same
studies, methane production was not reduced long-term
when heifers were fed monensin in confinement [79].
These mixed results provide further evidence that
additional research is needed regarding methane mitigation,
specifically from a dietary or dietary supplementation
approach.

Ruminant Microbiomes and
Reproductive Efficiency

Another challenge to the livestock industry is the
prevalence of reproductive losses which has been
estimated to cost the beef and dairy industry over
1 billion dollars annually [80]. For example, in beef cattle,
optimal reproductive efficiency is often defined as a calving
interval of 365 days [81]. Every additional day the cow does
not produce a calf results in delayed profit for the producer.
Failure of a cow to produce a calf may result in the cow
being culled from the herd and little to no return on
investment. The development of reproductive technologies
and management methods, such as estrus synchronization,
artificial insemination and in vitro fertilization have con-
tributed to improvements in reproductive efficiency [82].
Current research is examining the reproductive tract
microbiomes and their potential to further improve
ruminant reproductive efficiency.
It was previously thought that the uterus and vagina were

sterile environments except in the case of pathogenicity
[83, 84]. However, within the last decade, research on
microbiomes of the reproductive tract has been widely
explored in humans, antithetical to the previous dogma of
sterility [85, 86]. In healthy women, the vagina is dominated
by Lactobacillus, which may contribute to the low pH of the
vagina [87]. The low pH and dominance of Lactobacillus
likely reduce pathogen presence and vaginal microbial
dysbiosis [87]. Additionally, studies have indicated
increased diversity along with decreases in Lactobacillus
dominance of the reproductive tract is associated with
reproductive issues, such as reduced fertility or pre-term
birth [88, 89]. As it is now widely accepted in the human
scientific community that reproductive tracts contain
unique, native microbiomes capable of affecting reproduc-
tive health and fertility, this knowledge can be translated
into livestock reproductive microbiomics.

Lactobacillus appears to be important for human repro-
ductive health, however, Lactobacilli are present in very low
abundances in the vagina of cattle and other ruminants,
suggesting that other vaginal microbiota may fulfill the
function of protecting the host from pathogenic microbiota
[90]. Similar to humans, ruminants possess unique uterine
and vaginal microbiomes [46, 90, 91]. In cattle, vaginal
bacterial communities are dominated by Firmicutes,
Bacteroidetes and Proteobacteria, not unlike the rumen
and lower gastrointestinal tract microbiomes [46, 90, 91].
The role of the uterine microbiome is much less explored
or understood. Until the last several years, it was widely
accepted that the uterus was a sterile environment, with
the exception of dysbiosis [85]. In the uterus, the
dominating phyla include Firmicutes, Proteobacteria,
Actinobacteria and Bacteroidetes [90, 92]. Although it
is very similar in bacterial composition to that of the
vagina, the uterus typically has less microbial diversity than
the vagina and greater abundance of unassigned or
yet-to-be-defined taxa [91]. Further research is needed to
understand the entirety of the reproductive tract micro-
biome, especially the uterus, in bovine and at different
stages of growth and production.
Although becoming increasingly prevalent, few studies

have examined the relationships among the uterine micro-
biome, dysbiosis and reproductive efficiency. Santos and
Bicalho used PCR-DGGE and 454 pyrosequencing to
interrogate the uterine bacterial community composition
of dairy cattle of varying diseased states, including healthy,
metritic and endometritic cows [93]. The study revealed
that bacterial communities clustered by health state,
regardless of days postpartum [93]. It was also observed
that healthy cows were greater in bacterial phylogenetic
diversity than unhealthy animals [93], which has been
supported by additional studies in cattle [94]. Greater
diversity may indicate, in part, the role of the uterine
microbiome for reducing and preventing infection [93, 94].
Recently, research has begun to evaluate the use of
probiotics and their effects on reproductive health in
cattle. Genís et al. administered lactic acid bacteria (LAB),
such as Lactobacillus spp., to cows prior to calving and
assessed the occurrence of postpartum metritis among
treatment groups [95]. Results indicated a decrease in
the prevalence of metritis among cows treated with vaginal
LAB, as well as reduction in neutrophil gene expression
[95]. Although, Lactobacillus is not a dominant organism
in the reproductive tract of cows as determined by
previous studies [90, 91], this study suggests the addition
of Lactobacillus spp. may still provide protection against
pathogen colonization as similar to human vaginal micro-
biomes. Further research is needed, however, on the use of
reproductive tract probiotics to reduce the incidence of
postpartum diseases and may be a suitable replacement to
minimize the need for antibiotics. In addition, as post-
partum diseases may delay a cow’s time to subsequent
conception, probiotics must be studied for their effect on
fertility and improving reproductive efficiency.
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Ruminant Microbiomes in Health and Disease

Beef cattle health and food-safety are important issues that
the industry has faced for decades. Not only does a
sustainable food system need to address diseases affecting
the food-producing animals that may reduce productivity
but also zoonoses that impact food safety and human
health.
One of the most common and economically important

health problems to the US beef industry is bovine
respiratory disease (BRD) [96]. Respiratory-related illness
is the leading cause of mortality in all cattle and calves in the
USA [97], and collectively BRD costs the beef industry over
US$1 billion annually due to loss of production, treatment
costs, increased labor costs and mortality [98]. The most
common bacterial agents associated with BRD are
Mannheimia haemolytica, Pasteurella multocida, Histophilus
somnus, Mycoplasma bovis and less frequently Trueperella
pyogenes [98], and they are opportunistic pathogens [99].
As BRD is a multifactorial disease, many factors play a role
in causing sufficient disease. Co-infection with viral
pathogens, stress caused by transportation, commingling
of multi-origin cattle and changes in weather have all been
associated with the development of BRD [100, 101].
Additionally, there are host factors, such as the animal’s
commensal bacterial populations, that may increase or
reduce the risk for BRD. In both humans and cattle alike,
commensal organisms in the nasopharynx likely inhibit
opportunistic bacterial infections, and when dysbiosis
occurs, this protection is voided [101–103].
Studies utilizing 16S metataxonomics have shown that

Proteobacteria and Firmicutes comprise the majority of
nasopharyngeal phyla in all cattle followed by lesser
proportions of Actinobacter, Bacteriodetes and Tenericutes
[104, 105]. Additionally, culture-based works have shown
that the largest fraction of genera within the upper
respiratory microbiota include Moraxella, Pasteurella,
Manheimmia, Acinetobacter and Staphylococcus [106–108].
There is evidence that feedlot cattle that were never
treated for respiratory disease during the first few weeks
after arrival had increased bacterial diversity and richness of
their nasopharyngeal microbiome compared with cattle
that were treated [104]. In that study, there was a
significantly greater number of species at day 0 and 60 in
healthy cattle compared with cattle that had BRD [104].
Interestingly, at entry to the feedlot there were significantly
greater relative abundances of Lactobacillus and Pediococcus
in healthy cattle, and all cattle that would later be treated
for BRD had detectable taxa associated with either
Mannheimia haemolytica or Pasteurella multocida [104].
In a study by Zeineldin et al. calves with BRD were more
likely to harbor Proteobacteria, Firmicutes and Tenericutes
phyla than healthy calves, and at the genus-level
Acinetobacter, Solibacillus and Pasteurella were more
common in BRD affected calves [109]. Furthermore,
there was a relatively greater abundance of Acinetobacter
species in BRD calves, while there was no difference in

relative abundance of Mannheimia between healthy and
diseased calves [109].
There is evidence that bacterial genera change over time

immediately after weaning differently among calves that
are diagnosed with BRD and their healthy cohorts [110].
The majority of clinical cases of BRD in feeder cattle occur
within the first few weeks of arrival at the feedyard. In a
study by Holman et al. 14 Angus ×Hereford heifers of
single farm origin were transported to a feedyard and
nasopharyngeal swabs were collected at days 0, 2, 7 and 14
[111]. Within 2 days of transport to the feedyard,
nasopharyngeal microbiota changed significantly with
regard to phylogenetic diversity and richness, and con-
tinued to shift throughout the study period as determined
by UniFrac distances [111]. Although relative abundance of
BRD-associated bacteria did not significantly change over
time, it is likely that the instability caused by entry into the
feedlot may contribute to increased risk for BRD soon after
feedlot arrival [111].
In addition to respiratory tract microbiota, another

important microbial community of food security interest is
that of the lower gastrointestinal tract and feces.
Foodborne pathogens like Escherichia coli O157:H7 may
be shed in the manure of cattle and cause direct or indirect
gastrointestinal infection in humans [112]. E. coli O157:H7
is a pathogenic bacterium capable of causing severe illness
or even death when ingested by humans [113]. Cattle
populations are known reservoirs for this pathogen, and are
typically asymptomatic carriers of the organism [114–116].
The terminal rectum mucosa, also known as the recto-anal
junction (RAJ), is the primary site of colonization by E. coli
O157:H7 [117, 118]. Not only can cattle become colonized
by the organism, but they also regularly shed the pathogen
in their feces [119]. Additionally, their hides may become
contaminated, and at slaughter, hide-to-carcass transfer can
lead to food safety concerns [120].
Cattle typically shed small quantities of the bacteria in

their manure, but there have been instances where
individual animals may shed up to 6.5 × 107 CFU per gram
of feces [121]. Cattle shedding >104 CFU per gram have
been termed ‘supershedders’ [122]. Supershedders (SS)
only represent a small proportion of the EHEC O157:H7
positive animals, but contribute the majority of environ-
mental contamination [123, 124]. Recent studies have
aimed to identify differences in SS compared with cattle
that were not shedding (NS) the organism [121, 125].
Wang et al. determined that although there were no
differences in alpha diversity measurements between SS
and NS, there were microbiota composition differences
and large animal-to-animal variation in taxonomic and beta
diversity measurements [125]. The core microbes of the
terminal rectum were Firmicutes, Bacteroidetes and
Proteobacteria [125]. These findings were consistent with
other studies looking at rectum content in dairy cows [126]
and fecal microbes in beef and dairy cattle [127–130].
Additionally, Wang et al. determined that there were
unique microbes associated with NS that may be also be
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associated with propionate and butyrate production [125].
The increased production of these short-chain fatty acids
may create a gut environment that is unfavorable for
colonization and lead to reductions in E. coli O157:H7
shedding [131]. Supershedding cattle may harbour a more
diverse fecal microbiome and specific differences in species
in these animals compared NS cattle may play an important
role in supershedding [121]. It remains unclear if E. coli
O157:H7 overgrowth is caused by intestinal dysbiosis.

Conclusions

Microbiomes are, in part, responsible for the normal
function of mammalian systems. These complex networks
of microbes aid in the function and health of the host and its
microbial niche. In ruminants, maintaining efficient and
healthy systems such as the gut, reproductive tract and
respiratory tract are important for production, as microbial
dysbioses can lead to inefficiencies in feed, reproduction
losses, disease and health issues. As research continues to
develop past the characterization of microbiomes with
regard to production in ruminants, researchers can begin
to connect and define the complex network dictating these
host-microbe symbioses. Researchers have begun to link
microbiomes through genomics to their host [132] or link
microbiome function to production phenotypes, such as FE
[133]. Building upon the knowledge gained from micro-
biomes throughout ruminant production will ultimately
permit strategies to select for or manipulate microbiomes
to obtain desirable, healthy and efficient microbiomes in
adult ruminants. These advances have the potential to
greatly impact the livestock sector in producing greater
amounts of high-quality protein for human consumption.
Such progress also takes into account the promotion and
support for animal health, as commensal microbial tech-
nologies are natural solutions. Sustainably and efficiently
improving these sources of high-quality protein through
novel tools and technologies will be a key process for global
food production and food security.
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